Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)
Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:
\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)
\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)
=> đpcm
Ta có: \(\left(\left|x\right|-\left|y\right|\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2\left|xy\right|\)
\(\Rightarrow\left|\frac{2xy}{x^2+y^2}\right|\le1\)(*)
Lại có: \(\left(a+b\right)^2+\left(1-ab\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
Nên: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|=\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\)
Áp dụng (*), ta có: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\le\frac{1}{2}\)
\(\Rightarrow\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|\le\frac{1}{2}\)
\(\Rightarrow\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\) \(\left(đpcm\right)\)
Ta chứng minh
\(\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
\(\Leftrightarrow2\left(a+b\right)\left(1-ab\right)+\left(a^2+1\right)\left(b^2+1\right)\ge0\)
\(\Leftrightarrow\left(ab-a-b-1\right)^2\ge0\)(đúng)
Tương tự cho trường hợp còn lại ta có ĐPCM
Lời giải:
Vì \(1< x< 3\Rightarrow \left\{\begin{matrix}
|x-3|=|3-x|=3-x\\
|x-1|=x-1\end{matrix}\right.\). Khi đó:
\(A=\frac{|x-3|}{x-3}-\frac{|x-1|}{1-x}+|x-1|+|3-x|\)
\(=\frac{3-x}{x-3}-\frac{x-1}{1-x}+x-1+3-x\)
\(=-1-(-1)+2=2\)
Vậy giá trị của $A$ là $2$
mình rất muốn giúp bạn nhưng cuộc sống đẹp ở chỗ là mình học ngu anh văn :v, nên mình xin lỗi