K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

2007 thì phải 

8 tháng 3 2020

Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)

Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:

\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)

\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)

=> đpcm

10 tháng 3 2020

Ta có : \(\left(1+\sqrt{2019}\right)\sqrt{2020-2\sqrt{2019}}\)

\(=\left(1+\sqrt{2019}\right).\sqrt{2019-2\sqrt{2019}+1}\)

\(=\left(1+\sqrt{2019}\right)\sqrt{\left(\sqrt{2019}-1\right)^2}\)

\(=\left(1+\sqrt{2019}\right)\left(\sqrt{2019}-1\right)\)

\(=2019-1=2018\)

3 tháng 12 2017

Ta có: \(\left(\left|x\right|-\left|y\right|\right)^2\ge0\)

\(\Rightarrow x^2+y^2\ge2\left|xy\right|\)

\(\Rightarrow\left|\frac{2xy}{x^2+y^2}\right|\le1\)(*)

Lại có: \(\left(a+b\right)^2+\left(1-ab\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)

Nên: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|=\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\)

Áp dụng (*), ta có: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\le\frac{1}{2}\)

\(\Rightarrow\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|\le\frac{1}{2}\)

\(\Rightarrow\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\)  \(\left(đpcm\right)\)

27 tháng 3 2017

Ta chứng minh

\(\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

\(\Leftrightarrow2\left(a+b\right)\left(1-ab\right)+\left(a^2+1\right)\left(b^2+1\right)\ge0\)

\(\Leftrightarrow\left(ab-a-b-1\right)^2\ge0\)(đúng)

Tương tự cho trường hợp còn lại ta có ĐPCM

27 tháng 3 2017

Bạn trã lời cho mình được không

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:
\(1< x< 3\Rightarrow \left\{\begin{matrix} |x-3|=|3-x|=3-x\\ |x-1|=x-1\end{matrix}\right.\). Khi đó:

\(A=\frac{|x-3|}{x-3}-\frac{|x-1|}{1-x}+|x-1|+|3-x|\)

\(=\frac{3-x}{x-3}-\frac{x-1}{1-x}+x-1+3-x\)

\(=-1-(-1)+2=2\)

Vậy giá trị của $A$ là $2$

4 tháng 8 2017

Bạn ơi bài này của lớp 9 chứ có phải của lớp 8 đâu