Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề ta có:
\(MA+MC\ge AC\left(1\right)\) và \(MB+MD\ge BD\left(2\right)\)
=>\(MA+MB+MC+MD\ge AC+BD\) ( không đổi)(3)
Dấu đẳng thức ở (3) xảy ra khi (1) và (2) đồng thời xảy ra dấu đẳng thức khi M đồng thời thuộc AC và BD , tức là M trùng O ( giao điểm của AC và BD) .Vậy O là điểm có tổng các khoảng cách đến các đỉnh của tứ giác là nhỏ nhất hay tổng các khoảng cách từ M đến các cạnh là hằng số.
Gọi hình vuông đó là ABCD, E,F lần lượt là trung điểm của AD, CB
Gọi G,H là 2 điểm trên EF sao cho EG=KE=8cm
AG=GD=GB=HC=BE2+HE2>20
Kẻ 6 đường tròn tâm A,G,D,C,H,B bán kính 10cm
Suy ra không có 2 đường tròn nào cắt nhau
5 điểm cho sẵn
Nên sẽ tồn tại 1 đường tròn chứa không chứa 5 điểm đó. Gọi O là tâm đường tròn đó và O là điểm thỏa ycbt
dòng này tôi viết vì có việc nhé ko phải là tl linh tinh mong thông cảm và cũng ko phải là nội dung bài làm nhé.
Có nhiều cách CM nhưng sử dụng diện tích là cách nhanh nhất
Kẻ đường cao BD
Vì tam giác ABC cân tại A nên AB=AC
Ta có :
\(S_{ABM}+S_{AMC}=S_{ABC}\)
\(\Leftrightarrow\frac{1}{2}AB\cdot MH+\frac{1}{2}AC\cdot MK=\frac{1}{2}AC\cdot BD\)
\(\Leftrightarrow\frac{1}{2}AC\left(MH+MK\right)=\frac{1}{2}AC\cdot BD\)(Vì AB=AC)
\(\Leftrightarrow MH+MK=BD\)
Mà BD là đường cao của tam giác ABC cố định
Hay BD cố định
Suy ra MH+MK không đổi
Vậy........
Còn cách hai thì phức tạp hơn