K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

\(\Delta'=m^2+2m+3=\left(m+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\) với mọi m

Vậy pt luôn có 2 ngiệm phân biệt với mọi m

13 tháng 3 2017

* Xét x = 0 thay vào pt đã cho ta được:
4 = 0 ( Vô lý )
Suy ra x = 0 không là nghiệm của pt đã cho.
* Với x khác 0, chia cả 2 vế của pt cho \(x^2\) ta được:
\(x^2-9x+16+\dfrac{18}{x}+\dfrac{4}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{4}{x^2}\right)-9\left(x-\dfrac{2}{x}\right)+16=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{x}\right)^2+4-9\left(x-\dfrac{2}{x}\right)+16=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{x}\right)^2-9\left(x-\dfrac{2}{x}\right)+20=0\) (1)
Đặt \(x-\dfrac{2}{x}=t\) . Khi đó (1) trở thành:
\(t^2-9t+20=0\)
\(\Leftrightarrow\left(t-4\right)\left(t-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=5\end{matrix}\right.\)
Với t = 4 ta có :
\(x-\dfrac{2}{x}=4\)
\(\Leftrightarrow x^2-2=4x\)
\(\Leftrightarrow x^2-4x-2=0\)
Bạn tự giải nốt ra nghiệm và trường hợp t = 5 nhé.

12 tháng 6 2017

cảm ơn chị :)

27 tháng 11 2021

 lỗi hình r ạ

27 tháng 11 2021

để em viết ra vậy ạ

cho tam giac mnp vuông tại m (mn>mp)  có đường cao mk

a) biết mn=20cm, mp=15cm, tính mk và góc mnp (góc làm tròn đến đơn vị phút).

b) vẽ trung tuyến me của tam giác mnp. từ p vẽ đường thẳng vuông góc với me cắt mn tại d. cm tam giác mnp đồng dạng với tam giác mpd, từ đó suy ra mn.md=np.pk

NV
19 tháng 9 2021

a.

d đi qua A nên:

\(1\left(m+1\right)-2m+3=2\)

\(\Rightarrow m=2\)

b.

Em tự vẽ

c.

Giả sử điểm cố định mà d luôn đi qua là \(M\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0-2m+3\)

\(\Leftrightarrow m\left(x_0-2\right)+x_0-y_0+3=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-y_0+3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=5\end{matrix}\right.\) \(\Rightarrow M\left(2;5\right)\)

d.

- Với \(m=-1\Rightarrow\) d không cắt y=2

- Với \(m\ne-1\)

\(\Rightarrow\left(m+1\right)x-2m+3=2\)

\(\Rightarrow\left(m+1\right)x=2m-1\)

\(\Rightarrow x=\dfrac{2m-1}{m+1}\)

Tọa độ giao điểm của d và y=2 là: \(\left(\dfrac{2m-1}{m+1};2\right)\)

21 tháng 10 2021

Dạng 1:

1/ ĐKXĐ: \(x\le0\)

2/ ĐKXĐ: \(x\ge\dfrac{3}{5}\)

3/ ĐKXĐ: \(x\le-4\)

4/ ĐKXĐ: \(x\ge5\)

21 tháng 10 2021

Dạng 1:

\(1,ĐK:-2x+3\ge0\Leftrightarrow x\le\dfrac{3}{2}\\ 2,ĐK:5x-3\ge0\Leftrightarrow x\ge\dfrac{3}{5}\\ 3,ĐK:\dfrac{-100}{x+3}\ge0\Leftrightarrow x+3< 0\left(-100< 0;x+3\ne0\right)\\ \Leftrightarrow x< -3\\ 4,ĐK:\dfrac{x-5}{3}\ge0\Leftrightarrow x-5\ge0\left(3>0\right)\\ \Leftrightarrow x\ge5\)

Dạng 2:

\(1,=2\sqrt{5}-6\sqrt{5}+12\sqrt{5}-8\sqrt{5}=0\\ 9,=\left(3-\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\\ =\left(3-\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\\ =4\left(3-\sqrt{5}\right)=12-4\sqrt{5}\\ 2,=\dfrac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\dfrac{20\sqrt{3}}{3}\\ =12\sqrt{3}-\dfrac{16\sqrt{3}}{3}=\dfrac{36\sqrt{3}-16\sqrt{3}}{3}=\dfrac{20\sqrt{3}}{3}\\ 10,=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ =32-8\sqrt{15}+8\sqrt{15}-30=2\)