Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: BH\(\perp\)AH tại H
nên BH là tiếp tuyến của (A;AH) có H là tiếp điểm
Ta có: CH\(\perp\)AH tại H
nên CH là tiếp tuyến của (A;AH) có H là tiếp điểm
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm
BM là tiếp tuyến có M là tiếp điểm
Do đó: BH=BM
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: CH=CN
Ta có: BH+CH=BC
nên BC=BM+CN
b, Vì C là giao 2 tiếp tuyến CH và CN của (A;AH) nên AC là phân giác góc NCH
Vì B là giao 2 tiếp tuyến BH và BM của (A;AH) nên AB là phân giác góc HBM
Do đó \(\widehat{MBC}+\widehat{NCB}=2\left(\widehat{ACH}+\widehat{ABH}\right)=2\cdot90^0=180^0\)
Mà 2 góc này ở vị trí trong cùng phía nên BM//CN
c, Vì BM,CN là tiếp tuyến (A;AH) nên \(BM\perp AM;CN\perp AN\)
Mà BM//CN nên AM trùng AN hay A;M;N thẳng hàng
a: Xét (A) có
AH là bán kính
BH\(\perp\)AH tại H
CH\(\perp\)AH tại H
Do đó: BH,CH là tiếp tuyến có H là tiếp điểm
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm
BM là tiếp tuyến có M là tiếp điểm
Do đó: AB là tia phân giác của \(\widehat{HAM}\)
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: AC là tia phân giác của \(\widehat{HAN}\)
Ta có: \(\widehat{MAN}=\widehat{HAM}+\widehat{HAN}\)
\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(=2\cdot90^0=180^0\)
Do đó: M,A,N thẳng hàng
a: Xét tứ giác AHCN có
\(\widehat{AHC}+\widehat{ANC}=180^0\)
Do đó: AHCN là tứ giác nội tiếp
a: ta có: BH⊥AH tại H
nên BH là tiếp tuyến của (A;AH) có H là tiếp điểm
Ta có: CH⊥AH tại H
nên CH là tiếp tuyến của (A;AH) có H là tiếp điểm
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm
BM là tiếp tuyến có M là tiếp điểm
Do đó: BH=BM
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: CH=CN
Ta có: BH+CH=BC
nên BC=BM+CN