K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2020

1.

\(y_{n+2}+2y_{n+1}+4y_n=3n-4\)

Xét phương trình thuần nhất: \(y_{n+2}+2y_{n+1}+4y_n=0\)

Pt đặc trưng: \(\lambda^2+2\lambda+4=0\Rightarrow\lambda_{1,2}=2\left(cos\frac{2\pi}{3}\pm sin\frac{2\pi}{3}\right)\)

\(\Rightarrow\) Nghiệm của pt thuần nhất có dạng:

\(\overline{y_n}=2^n\left(c_1.cos\frac{2n\pi}{3}+c_2.sin\frac{2n\pi}{3}\right)\)

Tìm nghiệm riêng có dạng: \(y_n^0=an+b\)

Thay vào pt:

\(a\left(n+2\right)+b+2\left[a\left(n+1\right)+b\right]+4\left[an+b\right]=3n-4\)

\(\Leftrightarrow7an+4a+7b=3n-4\)

\(\Rightarrow\left\{{}\begin{matrix}7a=3\\4a+7b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{7}\\b=-\frac{40}{49}\end{matrix}\right.\)

Nghiệm riêng có dạng: \(y_n^0=\frac{3}{7}n-\frac{40}{49}\)

Nghiệm tổng quát: \(y_n=2^n\left(c_1.cos\frac{2n\pi}{3}+c_2.sin\frac{2n\pi}{3}\right)+\frac{3}{7}n-\frac{40}{49}\)

2.

\(\left(y^2-2\right)dx=y\left(x^2+1\right)dy\)

\(\Leftrightarrow\frac{y}{y^2-2}dy-\frac{1}{x^2+1}dx=0\)

Lấy tích phân 2 vế:

\(\Rightarrow\int\frac{y}{y^2-2}dy-\int\frac{1}{x^2+1}dx=C\)

\(\Rightarrow\frac{1}{2}ln\left|y^2-2\right|-arctanx=C\)

9 tháng 4 2018

22 tháng 1 2018

30 tháng 8 2019

Dạng toán tích phân, khá khó f(x)= F(x) + C

30 tháng 8 2019

Mọi người không thích giúp đỡ, chỉ muốn lấy điểm, web học hiểu toán lại biến thành tựu trò chơi. 

Đúng là mất thời gian, luống công mà.

4 tháng 4 2017

a) \(dy=d\left(tan^2x\right)=\left(tan^2x\right)'dx=2tanx.\left(tanx\right)'dx=\dfrac{2tanx}{cosx}dx\)

b) \(dy=d\left(\dfrac{cosx}{1-x^2}\right)=\left(\dfrac{cosx}{1-x^2}\right)'dx=\dfrac{\left(cosx\right)'.\left(1-x^2\right)-cosx\left(1-x^2\right)'}{\left(1-x^2\right)^2}dx=\dfrac{\left(x^2-1\right).sinx+2xcosx}{\left(1-x^2\right)^2}=dx\)

18 tháng 8 2019

y = ax + b ⇒ y′ = a và dy = adx = aΔx;

Δy = a(x + Δx) + b − [ax + b] = aΔx..

Vậy dy = Δy.

25 tháng 12 2019

Chọn D

Ta có: 

Đặt . Đổi cận:

Khi 

 

Khi đó:

 

 khi , Do đó,