Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ nhé.
\(a,\) 2 đồ thị hàm số \(y=2x,y=-3x+5\) giao nhau khi và chỉ khi :
\(2x=-3x+5\\ \Leftrightarrow5x=5\\ \Leftrightarrow x=1\)
Thay \(x=1\) vào \(y=2x\Leftrightarrow y=2\)
Vậy giao điểm của 2 đồ thị là \(\left(1;2\right)\)
\(b,\) 2 đồ thị hàm số \(y=3x+2,y=-\dfrac{1}{2}x+1\) giao nhau khi và chỉ khi :
\(3x+2=-\dfrac{1}{2}x+1\\ \Leftrightarrow\dfrac{7}{2}x=-1\\ \Leftrightarrow x=-\dfrac{2}{7}\)
Thay \(x=-\dfrac{2}{7}\) vào \(y=3x+2\Rightarrow y=\dfrac{8}{7}\)
Vậy giao điểm của 2 đồ thị là \(\left(-\dfrac{2}{7};\dfrac{8}{7}\right)\)
\(c,\) 2 đồ thị hàm số \(y=\dfrac{3}{2}x-2,y=-\dfrac{1}{2}x+2\) giao nhau khi và chỉ khi :
\(\dfrac{3}{2}x-2=-\dfrac{1}{2}x+2\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
Thay \(x=2\) vào \(y=\dfrac{3}{2}x-2\Rightarrow y=1\)
Vậy giao điểm của 2 đồ thị là \(\left(2;1\right)\)
\(d,\) 2 đồ thị hàm số \(y=-2x+5,y=x+2\) giao nhau khi và chỉ khi :
\(-2x+5=x+2\\ \Leftrightarrow-3x=-3\\ \Leftrightarrow x=1\)
Thay \(x=1\) vào \(y=x+2\Rightarrow y=3\)
Vậy giao điểm của 2 đồ thị là \(\left(1;3\right)\)
Lời giải:
Để $(d)$ cắt $(P)$ tại hai điểm phân biệt thì PT hoành độ giao điểm $x^2-(3x+2k-3)=x^2-3x+(3-2k)=0$ có 2 nghiệm phân biệt
Điều này xảy ra khi mà:
$\Delta=9-4(3-2k)>0$
$\Leftrightarrow -3+8k>0$
$\Leftrightarrow k> \frac{3}{8}$
Phương trình hoành độ giao điểm (P) và (d):
\(2x^2=-3x+5\Leftrightarrow2x^2+3x-5=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-\dfrac{5}{2}\Rightarrow y=\dfrac{25}{2}\end{matrix}\right.\)
Vậy (d) và (P) cắt nhau tại 2 điểm có tọa độ lần lượt là: \(\left(1;2\right);\left(-\dfrac{5}{2};\dfrac{25}{2}\right)\)
a)
a=3
b=-2
2 điểm C(1;1) và D (3;7)
b)
để 2 đường thẳng cắt nhau thì m khác 3
Thay y = 1 vào phương trình đường thẳng d ta được 3x – 5 = 1 ⇔ x = 2
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (2; 1)
Thay x = 2; y = 1 vào hàm số y = 3 m + 4 − 7 4 x22
ta được: 3 m + 4 − 7 4 .2 2 = 1 ⇔ 3 m + 4 − 7 4 = 1 4
⇔ 3 m + 4 = 2 ⇔ 3m + 4 = 4
⇔ 3m = 0 ⇔ m = 0 ⇒ (P): y = 1 4 x 2
Xét phương trình hoành độ giao điểm của d và (P):
1 4 x 2 = 3 x − 5 ⇔ x2 – 12x + 20 = 0
⇔ (x – 2) (x – 10) = 0 ⇔ x = 2 x = 10
Vậy hoành độ giao điểm còn lại là x = 10
Đáp án cần chọn là: D
B
B. y=-3x-6