Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của d với Ox và Oy lần lượt là A và B thì theo pt đoạn chắn ta có: \(A\left(a;0\right)\) ; \(B\left(0;b\right)\)
Do đường thẳng tạo với các tia Ox, Oy một tam giác nên \(a;b>0\)
\(\Rightarrow\left\{{}\begin{matrix}OA=a\\OB=b\end{matrix}\right.\) \(\Rightarrow S_{OAB}=\frac{1}{2}ab=4\Rightarrow ab=8\)
Mặt khác thay tọa độ M vào pt d ta được: \(\frac{-1}{a}+\frac{6}{b}=1\Leftrightarrow6a-b=ab\)
Ta được hệ: \(\left\{{}\begin{matrix}ab=8\\6a-b=ab\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\frac{8}{a}\\6a-b=ab\end{matrix}\right.\)
\(\Rightarrow6a-\frac{8}{a}=8\Leftrightarrow6a^2-8a-8=0\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow b=4\\a=-\frac{2}{3}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow S=10\)
Do d cắt các tia Ox, Oy nên \(a;b>0\)
Gọi B và C lần lượt là giao điểm của d với Ox và Oy \(\Rightarrow B\left(a;0\right)\) ; \(C\left(0;b\right)\)
\(\Rightarrow OB=a\) ; \(OC=b\)
\(S_{OBC}=\frac{1}{2}OB.OC=\frac{ab}{2}=4\Rightarrow ab=8\Rightarrow\frac{1}{b}=\frac{a}{8}\)
Do d đi qua M nên: \(-\frac{1}{a}+\frac{6}{b}=1\)
\(\Rightarrow-\frac{1}{a}+\frac{6a}{8}=1\Leftrightarrow6a^2-8a-8=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-\frac{2}{3}< 0\left(l\right)\\a=2\Rightarrow b=4\end{matrix}\right.\)
Đề thiếu dữ liệu quan trọng nhất là diện tích tam giác bằng bao nhiêu
Đáp án C