Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1:
A B 2 = B H . B C = 1 . 3 = 3
=> AB = √3
Theo định lí 1:
A C 2 = H C . B C = 2 . 3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1: AB2 = BH.BC = 1.3 = 3
=> AB = √3
Theo định lí 1: AC2 = HC.BC = 2.3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có đường cao AH, ta có:
AH2=BH.CH⇒AH=√BH.CH=√1.2=√2
Áp dụng định lí Pytago vào tam giác ABH vuông tại H, ta có:
AH=√BH2+AH2=√1+2=√3AH=BH2+AH2=1+2=3
Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:
AC=√BC2−AB2=√32−3=√6AC=BC2−AB2=32−3=6
Giả sử tam giác ABC có góc BAC = 90o, AH ⊥ BC, BH = 3, CH = 4
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AB2 = BH.BC = 3.(3 + 4) = 3.7 = 21 ⇒ AB = \(\sqrt{21}\)
AC2 = CH.BC = 4.(3 + 4) = 4.7 = 28 ⇒ AC = \(\sqrt{28} = 2\sqrt{7} \)
Chúa PaiN sẽ giúp :)))))
Vẽ cái tam giác ra đặt tên y chang mình nhé :))))
Tam giác ABC vuông tại A Có AH là đường cao ứng với cạnh huyền ; BH = 9/5 và CH 16/5
Ta có \(AH^2=BH.BC\) ( 1 trong 4 công thức )
\(\Rightarrow AH^2=\left(\frac{9}{5}\right)^2.\left(\frac{16}{5}\right)^2\Rightarrow AH=\frac{12}{5}\)
ta có: tam giác vuông AHB vuông tại H :
\(AB^2=AH^2+BH^2=\left(\frac{12}{5}\right)^2+\left(\frac{9}{5}\right)^2\)
\(\Rightarrow AB^2=\frac{144}{25}+\frac{81}{25}=9\left(cm\right)\Rightarrow AB=3\left(cm\right)\)
Ta có: tam giác AHC vuông tại H:
\(AC^2=AH^2+HC^2=\left(\frac{12}{5}\right)^2+\left(\frac{16}{5}\right)^2\)
\(\Rightarrow AC^2=\frac{144}{25}+\frac{256}{25}=16\left(cm\right)\Rightarrow AC=4\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=3+4=7\left(cm\right)\)
BC²=AB²+AC²=9+16=25=>BC=5 chứ, mà tính cạnh góc vuông thui mà
Giả sử tam giác ABC có góc BAC = 90 ° , AH ⊥ BC, BH = 3, CH = 4
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
A B 2 = BH.BC = 3.(3 + 4) = 3.7 = 21 ⇒ AB = 21
A C 2 = CH.BC = 4.(3 + 4) = 4.7 = 28 ⇒ AC = 28 = 2 7
Giả sử: tam giác ABC vuông tại A có đường cao AH, BH=1; CH=2
Ta có: \(AH^2=BH.CH\)
\(\Leftrightarrow AH=\sqrt{2}\)
Trong tam giác ABH vuông tại H ta có
\(AB^2=AH^2+BH^2=2+1=3\)
Trong tam giác AHC vuông tại H có
\(AC^2=AH^2+HC^2=2+4=6\)
Khi đó: \(AB^2+AC^2=9\)