K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Ta có \(\left\{{}\begin{matrix}\left(3-2x\right)\left(3y-2x\right)\\\left(2x-3y\right)\left(2x-3\right)\end{matrix}\right.\left\{{}\begin{matrix}9y-6x-6xy+4x^2\\4x^2-6y-6xy+9y\end{matrix}\right.\\ =>\dfrac{3-2x}{2x-3y}=\dfrac{2x-3}{3y-2x}\)

\(\dfrac{2x}{x+1}=\dfrac{2x\cdot x}{x\left(x+1\right)}=\dfrac{2x^2}{x^2+x}\)

12 tháng 4 2021

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3

15 tháng 12 2023

Bài 2:

a: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1+x}{x+1}-\dfrac{x-1}{x^2+x}\)

\(=\dfrac{x\left(x+1\right)-x+1}{x\left(x+1\right)}\)

\(=\dfrac{x^2+x-x+1}{x^2+x}=\dfrac{x^2+1}{x^2+x}\)

b: ĐKXĐ: \(x\notin\left\{-23;1\right\}\)

\(\dfrac{2x}{x+23}\cdot\dfrac{3x}{x-1}+\dfrac{2x}{x+23}\cdot\dfrac{23-2x}{x-1}\)

\(=\dfrac{2x}{x+23}\cdot\left(\dfrac{3x}{x-1}+\dfrac{23-2x}{x-1}\right)\)

\(=\dfrac{2x}{x+23}\cdot\dfrac{3x+23-2x}{x-1}\)

\(=\dfrac{2x}{x+23}\cdot\dfrac{x+23}{x-1}=\dfrac{2x}{x-1}\)

Bài 3:

a: Sửa đề: AMCN

Ta có: ABCD là hình bình hành

=>BC=AD(1)

Ta có: M là trung điểm của BC

=>\(BM=MC=\dfrac{BC}{2}\left(2\right)\)

Ta có: N là trung điểm của AD

=>\(NA=ND=\dfrac{AD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra BM=MC=NA=ND

Xét tứ giác AMCN có

MC//AN

MC=AN

Do đó: AMCN là hình bình hành

b: Xét tứ giác ABMN có

BM//AN

BM=AN

Do đó: ABMN là hình bình hành

Hình bình hành ABMN có \(AB=BM\left(=\dfrac{BC}{2}\right)\)

nên ABMN là hình thoi

c: Ta có: BM//AD

=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)

=>\(\widehat{EBM}=60^0\)

Xét ΔBEM có BE=BM(=BA) và \(\widehat{EBM}=60^0\)

nên ΔBEM đều

=>\(\widehat{BEM}=60^0\)

Xét hình thang ANME có \(\widehat{MEA}=\widehat{EAN}=60^0\)

nên ANME là hình thang cân

=>AM=NE

\(\dfrac{2x-2xy-3+3y}{1-3y+3y^2-y^3}=\dfrac{2x\left(1-y\right)-3\left(1-y\right)}{\left(1-y\right)^3}\)

\(=\dfrac{\left(2x-3\right)\left(1-y\right)}{\left(1-y\right)^3}=\dfrac{2x-3}{\left(1-y\right)^2}\)

19 tháng 12 2021

\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

12 tháng 10 2021

\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)

11 tháng 12 2018

\(a,\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)

\(b,\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{6}\)

Hok Tốt~~

11 tháng 12 2018

\(\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)

\(\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{4}\)

Tham khảo nhé~

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

29 tháng 1 2019

Để học tốt Toán 8 | Giải toán lớp 8