Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABDC có
AB//DC
AC//BD
Do đó: ABDC là hình bình hành
=>AD cắt BC tại trung điểm của mỗi đường
=>K là trung điểm chung của AD và BC
Xét ΔAED có
H,K lần lượt là trung điểm của AE,AD
=>HK là đường trung bình của ΔAED
=>HK//ED
Ta có: HK//ED
HK\(\perp\)AE
Do đó: ED\(\perp\)AE
=>ΔAED vuông tại E
Ta có: ΔEAD vuông tại E
mà EK là đường trung tuyến
nên KE=KD
=>ΔKED cân tại K
a: Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
Suy ra: BC=AD
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)