K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích:

Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Qua A kẻ đường thẳng song song với BC cắt CD tại E. Hình thang ABCE có 2 cạnh bên song song nên AB = EC = 2cm do đó DE = 2cm

Tam giác ADE dựng được vì biết 2 góc kề với một cạnh.

Điểm C nằm trên tia DE cách D một khoảng bằng 4cm.

Điểm B thỏa mãn hai điều kiện:

- B nằm trên đường thẳng đi qua A và song song với CD.

- B nằm trên đường thẳng đi qua C và song song với AE.

Cách dựng:

- Dựng ΔADE biết DE = 2cm,  ∠ D =  70 0 , E =  50 0

- Trên tia DE lấy điểm C sao cho DC = 4cm

- Dựng tia Ax // CD, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm C

- Dựng tia Cy // AE, Cy nằm trên nửa mặt phẳng bờ CD chứa điểm A.

Cy cắt Ax tại B. Hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB // CD.

CD = CE + ED ⇒ CE = CD – ED = 4 – 2 = 2 (cm)

Hình thang ABCE có hai cạnh bên AE // CB

⇒ AB = CE = 2 (cm)

∠ C =  ∠ E =  50 0 (hai góc đồng vị)

∠ D =  70 0

Hình thang ABCD thỏa mãn điều kiện bài toán.

Biện luận: Tam giác ADE luôn dựng được, hình thang ABCD luôn dựng được. Ta dựng được một hình thang thỏa mãn điều kiện bài toán.

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

21 tháng 4 2017

Hỏi đáp Toán

21 tháng 4 2017

Hỏi đáp Toán

21 tháng 4 2017

Hỏi đáp Toán

29 tháng 6 2017

Hình bình hành

16 tháng 1 2020

A B C D 2cm E 4cm 45

Kẻ \(BE\perp CD\)

Xét \(\Delta BEC\)vuông tại E có :

\(\widehat{BEC}=90^o\) ( theo cách vẽ )

Mà \(\widehat{C}=45^o\)(gt)

\(\Rightarrow\Delta BEC\)vuông cân tại E

\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )

Hay \(BE\perp DC\)(1)

Vì \(\widehat{D}=90^o\left(gt\right)\)

\(\Rightarrow AD\perp DC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )

Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)

\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)

 \(\Rightarrow AB=DE=2cm\)

Ta có \(EC=CD-BE\)

\(\Rightarrow EC=4-2\)

\(\Rightarrow EC=2cm\)

Mà BE = EC (cmt)

\(\Rightarrow BE=2cm\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)

Vậy \(S_{ABCD}=6\left(cm^2\right)\)

Chúc bạn học tốt !!!