K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

h: Ta có: \(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=2+\sqrt{3}+2-\sqrt{3}\)

=4

24 tháng 7 2019

 Có \(\left(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\right)^2\)

\(=\left(\sqrt{17-3\sqrt{32}}\right)^2+2\left(\sqrt{17-3\sqrt{32}}\right)\left(\sqrt{17+3\sqrt{32}}\right)\)\(+\left(\sqrt{17=3\sqrt{32}}\right)^2\)

 \(=17-3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)\(+17+3\sqrt{32}\)

\(=34+2\sqrt{17^2-9.32}\)

\(=34+2\sqrt{289-288}\)

\(=34+2\sqrt{1}=34+2=36\)

\(\Rightarrow\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

\(=\sqrt{36}=6\)

(Vì có \(\hept{\begin{cases}\sqrt{17-3\sqrt{32}}\ge0\\\sqrt{17+3\sqrt{32}}\ge0\end{cases}}\)nên \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\ge0\))

24 tháng 7 2019

Ở cuối dòng 2 mình nhầm dấu + thành dấu = nghe mọi người

21 tháng 6 2016

4x^2 - 7x -2 = 4x^2 - 8x + x - 2 = 4x(x - 2) + (x - 2) = (x -2)(4x + 1)

21 tháng 6 2016

\(4x^2-7x-2=4x^2-8x+x-2=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)

NV
1 tháng 8 2021

\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)

\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)

\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)

19 tháng 9 2021

\(7,=\left(\sqrt{x}\right)^2+2\cdot2\sqrt{x}+2^2=\left(\sqrt{x}+2\right)^2\\ 8,=\left(\sqrt{x}\right)^2-2\cdot3\sqrt{x}+3^2=x-6\sqrt{x}+9\\ 9,=\sqrt{x^3}+\sqrt{y^3}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\\ 10,=\sqrt{x^3}-\sqrt{y^3}=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\\ 11,=\sqrt{x^3}+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\\ 12,=\sqrt{x^3}-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)

7: \(x+4\sqrt{x}+4=\left(\sqrt{x}+2\right)^2\)

8: \(\left(\sqrt{x}-3\right)^2=x-6\sqrt{x}+9\)

9: \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

19 tháng 9 2021

7) \(x+4\sqrt{x}+4=\left(\sqrt{x}\right)^2+2\sqrt{x}.2+2^2=\left(\sqrt{x}+2\right)^2\)

8) \(\left(\sqrt{x}-3\right)^2=\left(\sqrt{x}\right)^2-2.\sqrt{x}.3+3^2=x-6\sqrt{x}+9\)

9) \(x\sqrt{x}+y\sqrt{y}=\sqrt{x^3}+\sqrt{y^3}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

10) \(x\sqrt{x}-y\sqrt{y}=\sqrt{x^3}-\sqrt{y^3}=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\)

11) \(x\sqrt{x}+1=\sqrt{x^3}+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

12) \(x\sqrt{x}-8=\sqrt{x^3}-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)

19 tháng 9 2021

7. x + \(4\sqrt{x}+4\)

\(\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2\)

\(\left(\sqrt{x}+2\right)^2\)

19 tháng 9 2021

9) \(x-1=\left(\sqrt{x}\right)^2-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

10) \(x\sqrt{x}-1=\sqrt{x^3}-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

11) \(x-2\sqrt{x}-63=\left(x-2\sqrt{x}+1\right)-64=\left(\sqrt{x}-1\right)^2-8^2=\left(\sqrt{x}-1-8\right)\left(\sqrt{x}-1+8\right)=\left(\sqrt{x}-9\right)\left(\sqrt{x}+7\right)\)

 

19 tháng 9 2021

sao k làm 12 nữa