Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi tọa độ điểm \(H=(a,b,c)\)
Ta có
\(\overrightarrow{AH}=(a,b,c-1)\perp \overrightarrow{BC}=(3,3,-1)\Rightarrow 3a+3b-(c-1)=0(1)\)
\(H\in BC\Rightarrow \) tồn tại \(k\in\mathbb{R}\) sao cho \(\overrightarrow {BH}=k\overrightarrow {BC}\)
\(\Leftrightarrow (a+1,b+2,c)=k(3,3,-1)\Rightarrow \frac{a+1}{3}=\frac{b+2}{3}=\frac{c}{-1}=k\)
\(\Rightarrow a=3k-1,b=3k-2,c=-k\)
Thay vào \((1)\Rightarrow 19k-8=0\rightarrow k=\frac{8}{19}\)
\(\Rightarrow (a,b,c)=\left(\frac{5}{19},\frac{-14}{19},\frac{-8}{19}\right)\)
Đáp án A.
à:::::::::: a,b nguyên dương
\(S=8b^2+3b+8\)
vậy min S tại b=1 (số nguyên dương ) ......nhìn thôi cũng thấy rồi !
=>minS=19======>>>(B)
\(y'=\left(a-4\right)x^2+4bx+1\)
Để hàm số đồng biến trên R thì
\(\left\{{}\begin{matrix}a-4>0\\4b^2-\left(a-4\right)\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a>4\\a-4\ge4b^2\end{matrix}\right.\)
ta thấy S=2a+3b nhỏ nhất khi a và b nhỏ nhất
ta thấy :\(a-4\ge4b^2\)
a và b sẽ mang giá trị nhỏ nhất khi \(a-4=4b^2\)
=>\(a=4b^2+4\)
vậy \(S=2\left(4b^2+4\right)+3b\)
vậy min S là : ...................
..............................
.................................
....................
\(-\infty\)
sao kì vậy ! may be lí luận sai chỗ nào đấy
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19\left(-3\right)^{-3}=\left(2^{-1}\right)^{-4}-\left(5^4\right)^{\frac{1}{4}}-\left[\left(\frac{3}{2}\right)^2\right]^{-\frac{3}{2}}+19.\frac{1}{\left(-3\right)^3}\)
\(=2^4-5-\left(\frac{3}{2}\right)^{-3}-\frac{19}{27}\)
\(=11-\left(\frac{2}{3}\right)^3-\frac{19}{27}=10\)
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19.\left(-3\right)^{-3}\)
\(=\left(\frac{1}{2}\right)^{-4}-625^{\frac{1}{4}}-\left(\frac{9}{4}\right)^{-\frac{3}{2}}+19.\left(-3\right)^{-3}\)
\(=2^4-\sqrt[4]{625}-\left(\frac{4}{9}\right)^{\frac{3}{2}}+19.\left(\frac{1}{\left(-3\right)^3}\right)\)
=\(16-5-\sqrt[2]{\left(\frac{4}{9}\right)^3}+19.\frac{1}{-27}=11-\frac{8}{27}-\frac{19}{27}=10\)
Đáp án A
Mặt cầu (S) có tâm I(1;1;1). Gọi E là điểm thoả mãn
T nhỏ nhất khi ME nhỏ nhất <=> M là 1 trong 2 giao điểm của đường thẳng IE và mặt cầu (S).
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [–π2;3π2][–π2;3π2] và các hàm số y = |x| trên khoảng (-∞; +∞).
đấy là câu hỏi ạ