K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)

b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)

\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)

c: \(-\sqrt{75a^2b^3}\)

\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)

18 tháng 1 2022

chịu.-.

HT~~~

3 tháng 10 2022

loading...  

21 tháng 7 2023

a) \(\sqrt{27x^2}\)

\(=\sqrt{3^2\cdot3x^2}\)

\(=\left|3x\right|\sqrt{3}\)

\(=3\left|x\right|\sqrt{3}\)

b) \(\sqrt{8xy^2}\)

\(=\sqrt{2^2\cdot2\cdot x\cdot y^2}\)

\(=\left|2y\right|\sqrt{2x}\)

\(=2\left|y\right|\sqrt{2x}\)

c) \(\sqrt{25x^3}\)

\(=\sqrt{5^2\cdot x^2\cdot x}\)

\(=\left|5x\right|\sqrt{x}\)

\(=5\left|x\right|\sqrt{x}\)

d) \(\sqrt{48xy^4}\)

\(=\sqrt{4^2\cdot3x\cdot\left(y^2\right)^2}\)

\(=\left|4y^2\right|\sqrt{3x}\)

\(=4y^2\sqrt{3x}\)

`a, sqrt(27x^2b) = sqrt(3^2. 3.x^2b) = 3|x|sqrt(3b)`.

`b, sqrt(8xy^2) =sqrt(2^2.2xy^2)= 2|y|sqrt(2x)`

`c, sqrt(25x^3d) = sqrt(5^2.x^2.x.d) = 5|x|sqrt(xd)`.

`d, sqrt(48xy^4) = sqrt(4^2.3 . xy^4) = 4y^2sqrt(3x)`.

15 tháng 8 2021

đưa thừa số vào trong dấu căn*

mình nhầm

a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)

b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)

\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)

\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)

\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)

\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)

\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)

 

27 tháng 7 2023

a) \(\sqrt{128\left(x-y\right)^2}\)

\(=\sqrt{8^2\cdot2\left(x-y\right)^2}\)

\(=\left|8\left(x-y\right)\right|\sqrt{2}\)

\(=8\left|\left(x-y\right)\right|\sqrt{2}\)

b) \(\sqrt{150\left(4x^2-4x+1\right)}\)

\(=\sqrt{5^2\cdot6\left(2x-1\right)^2}\)

\(=\left|5\left(2x-1\right)\right|\sqrt{6}\)

\(=5\left|2x-1\right|\sqrt{6}\)

c) \(\sqrt{x^3-6x^2+12x-8}\)

\(=\sqrt{\left(x-2\right)^3}\)

\(=\sqrt{\left(x-2\right)^2\left(x-2\right)}\)

\(=\left|x-2\right|\sqrt{x-2}\)

a: \(=\sqrt{64\cdot2\cdot\left(x-y\right)^2}=8\sqrt{2}\cdot\left|x-y\right|\)

b; \(=\sqrt{25\cdot6\left(2x-1\right)^2}=5\sqrt{6}\cdot\left|2x-1\right|\)

c: \(=\sqrt{\left(x-2\right)^3}=\left|x-2\right|\cdot\sqrt{x-2}\)

a: \(\sqrt{36\cdot3\cdot\left(a+7\right)^2}=6\sqrt{3}\left|a+7\right|\)

b: \(\sqrt{9^2\cdot a^4\cdot b^3\cdot b^3\cdot b}=9a^2b^3\sqrt{b}\)

c: Nếu đk xác định như này thì \(C=\sqrt{16a^5b^3}\) chỉ xác định với a=b=0 thôi nha bạn

=>C=0