\(3+2\sqrt{2}\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a)

\(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}^2\right)+2\times\sqrt{2}\times1=\left(\sqrt{2}+1\right)^2\)

mấy câu còn lại tương tự

29 tháng 7 2018

a/ 3 + 2\(\sqrt{2}\) = 2 + 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) + 2\(\sqrt{2}\) + 12 = ( \(\sqrt{2}\) + 1 )2

b/ 3 - \(\sqrt{8}\) = 2 - \(\sqrt{4.2}\) + 1 = 2 - 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) - 2\(\sqrt{2}\) + 12

= ( \(\sqrt{2}\) - 1 )2

c/ 9 + 4\(\sqrt{5}\) = 4 + 2.2\(\sqrt{5}\) + 5 = 22 + 2.2\(\sqrt{5}\) + \(\sqrt{5}\)2

= ( 2 + \(\sqrt{5}\) )2

d/ 23 - 8\(\sqrt{7}\) = 16 - 2.4.\(\sqrt{7}\) + 7 = 42 - 2.4.\(\sqrt{7}\) + \(\sqrt{7}^2\)

= ( 4 - \(\sqrt{7}\) )2

2 tháng 9 2017

\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)

a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)

b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)

20 tháng 8 2020

a) \(21-8\sqrt{5}=16-2\times4\times\sqrt{5}+5=\left(4-\sqrt{5}\right)^2\)

b) \(47-12\sqrt{11}=36-2\times6\times\sqrt{11}+11=\left(6-\sqrt{11}\right)^2\)

c) \(13-4\sqrt{3}=12-2\times1\times\sqrt{3}+1=\left(2\sqrt{3}-1\right)^2\)

d) \(43+30\sqrt{2}=25+2\times5\times3\sqrt{2}+18=\left(5+3\sqrt{2}\right)^2\)

e) \(41+24\sqrt{2}=9+2\times3\times4\sqrt{2}+32=\left(3+4\sqrt{2}\right)^2\)

g) \(29-12\sqrt{5}=9+2\times3\times2\sqrt{5}+20=\left(3+2\sqrt{5}\right)^2\)

h) \(49-8\sqrt{3}=48-2\times4\sqrt{3}\times1+1=\left(4\sqrt{3}-1\right)^2\)

i) \(37-12\sqrt{7}=28-2\times3\times2\sqrt{7}+9=\left(2\sqrt{7}-3\right)^2\)

31 tháng 5 2018

1)d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{4^2+2.4.\sqrt{7}+\sqrt{7^2}}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4\)

28 tháng 8 2018

a) \(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}\right)^2-2.2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\left|\sqrt{2}-\sqrt{5}\right|+\sqrt{5}\)

=\(\sqrt{2}-\sqrt{5}+\sqrt{5}\)

=\(\sqrt{2}\)

Bài 3:

a) Ta có: \(4+2\sqrt{3}\)

\(=3+2\cdot\sqrt{3}\cdot1+1\)

\(=\left(\sqrt{3}+1\right)^2\)

b) Ta có: \(7+4\sqrt{3}\)

\(=4+2\cdot2\cdot\sqrt{3}+3\)

\(=\left(2+\sqrt{3}\right)^2\)

c) Ta có: \(9+4\sqrt{5}\)

\(=5+2\cdot\sqrt{5}\cdot2+4\)

\(=\left(\sqrt{5}+2\right)^2\)

d) Ta có: \(31+10\sqrt{6}\)

\(=25+2\cdot5\cdot\sqrt{6}+6\)

\(=\left(5+\sqrt{6}\right)^2\)

e) Ta có: \(13+4\sqrt{3}\)

\(=12+2\cdot2\sqrt{3}\cdot1+1\)

\(=\left(2\sqrt{3}+1\right)^2\)

g) Ta có: \(21+12\sqrt{3}\)

\(=12+2\cdot2\sqrt{3}\cdot3+9\)

\(=\left(2\sqrt{3}+3\right)^2\)

h) Ta có: \(29+12\sqrt{5}\)

\(=20+2\cdot2\sqrt{5}\cdot3+3\)

\(=\left(2\sqrt{5}+3\right)^2\)

i) Ta có: \(49+8\sqrt{3}\)

\(=48+2\cdot4\sqrt{3}\cdot1\)

\(=\left(4\sqrt{3}+1\right)^2\)

k) Sửa đề: \(14-6\sqrt{5}\)

Ta có: \(14-6\sqrt{5}\)

\(=9-2\cdot3\cdot\sqrt{5}+5\)

\(=\left(3-\sqrt{5}\right)^2\)

l) Ta có: \(23-8\sqrt{7}\)

\(=16-2\cdot4\cdot\sqrt{7}+7\)

\(=\left(4-\sqrt{7}\right)^2\)

m) Ta có: \(15-4\sqrt{11}\)

\(=11-2\cdot\sqrt{11}\cdot2+4\)

\(=\left(\sqrt{11}-2\right)^2\)

n) Sửa đề: \(28-10\sqrt{3}\)

Ta có: \(28-10\sqrt{3}\)

\(=25-2\cdot5\cdot\sqrt{3}+3\)

\(=\left(5-\sqrt{3}\right)^2\)

o) Ta có: \(17-12\sqrt{2}\)

\(=9-2\cdot3\cdot2\sqrt{2}+8\)

\(=\left(3-2\sqrt{2}\right)^2\)

p) Ta có: \(43-30\sqrt{2}\)

\(=25-2\cdot5\cdot3\sqrt{2}+18\)

\(=\left(5-3\sqrt{2}\right)^2\)

q) Ta có: \(51-10\sqrt{2}\)

\(=50-2\cdot5\sqrt{2}\cdot1\)

\(=\left(5\sqrt{2}-1\right)^2\)

r) Ta có: \(49-12\sqrt{5}\)

\(=45-2\cdot3\sqrt{5}\cdot2+4\)

\(=\left(3\sqrt{5}-2\right)^2\)

31 tháng 8 2017

1) \(5-2\sqrt{6}=\left(\sqrt{3}\right)^2-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

2) \(8+2\sqrt{15}=\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}+\sqrt{3}\right)^2\)

3) \(10-2\sqrt{21}=\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{7}-\sqrt{3}\right)^2\)

4) \(21+6\sqrt{6}=\left(\sqrt{18}\right)^2+2.\sqrt{18}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{18}+\sqrt{3}\right)^2\)

5) \(14+8\sqrt{3}=\left(\sqrt{8}\right)^2+2.\sqrt{8}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{8}+\sqrt{6}\right)^2\)

6) \(36-12\sqrt{5}=\left(\sqrt{30}\right)^2-2.\sqrt{30}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{30}-\sqrt{6}\right)^2\)

7) \(25+4\sqrt{6}=\left(\sqrt{24}\right)^2+2\sqrt{24}.1+1^2=\left(\sqrt{24}+1\right)^2\)

8) \(98-16\sqrt{3}=\left(\sqrt{96}\right)^2-2\sqrt{96}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{96}-\sqrt{2}\right)^2\)

Câu 8:

a)

Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)

Ta có: 3>1

\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)

\(\Leftrightarrow\sqrt{3}>1\)

\(\Leftrightarrow\sqrt{3}-1>0\)

\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)

Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)

b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)

\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)

\(=5+4\sqrt{5}+4\)

\(=9+4\sqrt{5}=VT\)(đpcm)

c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)

\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)

d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4=VP\)(đpcm)

13 tháng 7 2020

em cảm ơn ạ yeu