K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

d)  c o s 2 25 0 - c o s 2 35 0 + c o s 2 45 0 - c o s 2 55 0 + c o s 2 65 0

= c o s 2 25 0 - c o s 2 35 0 + c o s 2 45 0 - sin 2 35 0 + sin 2 25 0

= cos 2 25 0 + sin 2 25 0 - cos 2 35 0 + sin 2 35 0 + c o s 2 45 0  

= 1 - 1 + 1/2

= 1/2

a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

=1+1+1+1/2

=3,5

b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)

=1-1-1+1/4

=-1+1/4=-3/4

c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)

=1/2

5 tháng 7 2016

giải ra (sinx - \(\sqrt{3}\)cosx)(sinx - cosx)

nếu sinx - \(\sqrt{3}\)cosx = 0

=> sinx = \(\sqrt{3}\)cosx

=> x = 60o

nếu sinx - cosx = 0

=> sinx = cosx

=> x=45o

a: Xét (O) có

ΔBDC nội tiếp

BD là đường kính

DO đó:ΔBDC vuông tại C

b: Xét ΔOBA và ΔOCA có

OB=OC

AB=AC

OA chung

DO đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

19 tháng 11 2018

Áp dụng bđt Cosi

\(ab\le\dfrac{a^2+b^2}{2}=\dfrac{1}{2}\)

\(2\dfrac{a}{\sqrt{2}}\le(a^2+\dfrac{1}{2})\Leftrightarrow2a\le(a^2+\dfrac{1}{2})\sqrt{2}\)

\(2\dfrac{b}{\sqrt{2}}\le(b^2+\dfrac{1}{2})\Leftrightarrow2b\le(b^2+\dfrac{1}{2})\sqrt{2}\)

\(\Rightarrow S\le\dfrac{1}{2}+\sqrt{2}\left(a^2+b^2+\dfrac{1}{2}+\dfrac{1}{2}\right)=\dfrac{1}{2}+2\sqrt{2}\)

Dấu bằng xảy ra khi a=b=\(\dfrac{1}{2}\)

a: \(S_{q\left(OAC\right)}=\dfrac{pi\cdot R^2\cdot90}{360}=pi\cdot\dfrac{R^2}{4}\)

\(S_{OAC}=\dfrac{1}{2}\cdot OA\cdot OC=\dfrac{1}{2}\cdot R^2\)

=>\(S_{vp}=pi\cdot\dfrac{R^2}{4}-\dfrac{1}{2}\cdot R^2\)

b: SỬa đề: AM cắt OC tại I

góc AMB=1/2*180=90 độ

góc IOB+gócIMB=180 độ

=>IOBM nội tiếp

 

5 tháng 2 2022

\(a.-3x^2+15x=0\)

\(\Leftrightarrow3x\left(-x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\-x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

\(b.2x^2-32=0\)

\(\Leftrightarrow2x^2=32\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow\left|x\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(c.2x^2-5x+1=0\)

\(a=2;b=-5;c=1\)

\(\Delta=\left(-5\right)^2-4.2.1=17>0\)

Do \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{5-\sqrt{17}}{4}\)

\(a,-3x^2+15x=0\\ -3x\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\) 

\(b,\\ 2\left(x^2-16\right)=0\\ \Leftrightarrow x^2-16=0\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\) 

\(c,\\ \Delta=5^2-4.2=17\\ \Rightarrow x_1,x_2=\dfrac{\Delta\pm b}{2ac}\\ =\dfrac{5\pm\sqrt{17}}{4}\)

4 tháng 2 2020

\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)

\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

Vậy \(Min_S=\frac{27}{4}\)