K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

= (sin2x )3 + (cos2x)3 + 3sin2x. cos2x = (sin2x + cos2x).(sin4x - sin2x.cos2x + cos4x) + 3sin2x. cos2

=  sin4x + 2sin2x.cos2x + cos4x  =  (sin2x + cos2x)2 = 12 = 1

19 tháng 10 2016

mk moi hoc lop 6 thui

chuc bn hoc gioI!n

nhaE@@

bn nhae$

18 tháng 9 2018

Một số hệ thức về cạnh và đường cao trong tam giác vuông

24 tháng 9 2018

thank

\(=\left(sin^2x+cos^2x\right)^3-3sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2xcos^2x+sin^2x+cos^2x\)

\(=1+1=2\)

Y
29 tháng 5 2019

\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x\cdot cos^2x+cos^4x\right)\)

\(+\left(sin^2x+cos^2x\right)^2-2sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)

\(=sin^4x+cos^4x-sin^2x\cdot cos^2x+1-2\cdot sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)

\(=1-2\cdot sin^2x\cdot cos^2x-sin^2x\cdot cos^2x+1-2\cdot sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)

\(=2\)

29 tháng 5 2019

Cảm ơn bạn !!!

15 tháng 12 2023

\(sin^6x+cos^6x+3\cdot sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

\(=1^3-3\cdot sin^2x\cdot cos^2x+3\cdot sin^2x\cdot cos^2x\)

=1

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

21 tháng 10 2015

\(sin^6x+cos^6x+3sin^2x.cos^2x=\left(sin^2x\right)^3+\left(cos^2x\right)^3+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)\left[\left(sin^2x\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2\right]+3sin^2x.cos^2x\)

\(=1.\left[\left(sin^2\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2\right]+3sin^2x.cos^2x\)

\(=\left(sin^2x\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2=1^2=1\)