K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Đáp án A

Chọn 5 học sinh từ đội văn nghệ của nhà trường, ta xét các trường hợp

TH1. 1 học sinh lớp 12A, 2 học sinh lớp 12B và 2 học sinh lớp 12C có C 4 1 . C 3 2 . C 2 2 = 12  cách.

TH2. 2 học sinh lớp 12A, 1 học sinh lớp 12B và 2 học sinh lớp 12C  có  C 4 2 . C 3 1 . C 2 2 = 18   cách

TH3. 3 học sinh lớp 12A, 1 học sinh lớp 12B và 1 học sinh lớp 12C có C 4 3 . C 3 1 . C 2 1 = 24 cách.

TH4. 1 học sinh lớp 12A, 3 học sinh lớp 12B và 1 học sinh lớp 12C có C 4 1 . C 3 3 . C 2 1 = 8 cách.

TH5. 2 học sinh lớp 12A, 2 học sinh lớp 12B và 1 học sinh lớp 12C → có C 4 2 . C 3 2 . C 2 1 = 36 cách.

25 tháng 9 2017

29 tháng 5 2019

Đáp án C

TH1: 4 học sinh được chọn thuộc một lớp:

+ Lớp A có C 5 4 = 5  cách chọn.

+ Lớp B có   C 4 4 = 1 cách chọn.

Trường hợp này có: 6 cách chọn.

TH2: 4 học sinh được chọn thuộc 2 lớp:

+ Lớp A và B: C 9 4 − C 5 4 + C 4 4 = 120 có .

+ Lớp B và C : C 7 4 − C 4 4 = 34 có

+ Lớp C và A: C 8 4 − C 5 4 = 65 có

Trường hợp này có 219 cách chọn.

Vậy có 225 cách chọn thỏa yêu cầu bài toán.

31 tháng 7 2017

Gọi n là số học sinh nữ của lớp n ∈ N * , n ≤ 28 .

Số cách chọn 3 học sinh bất kì là cách. Suy ra số phần tử của không gian mẫu n Ω = C 30 3  

Gọi A là biến cố “chọn được 2 nam và 1 nữ”. Ta có n A = C 30 - n 2 C n 1  

Theo đề

P A = 12 29 ⇔ C 30 - n 2 C n 1 C 30 3 = 12 29 ⇔ n - 14 n 2 - 45 n + 240 = 0 ⇔ n = 14 n = 45 ± 1065 2  

So với điều kiện, chọn n = 14 

Vậy lớp đó có 14 học sinh nữ.

Đáp án A

4 tháng 12 2017

29 tháng 4 2019

Coi 5 bạn của cả 12A và B vào một lớp 12X nào đó. Do số lượng ở đề nên ta có hai trường hợp

TH1. Các bạn 12C và 12X xen kẽ nhau. Có 5!.5!.2 = 28800 cách

TH2. Có hai bạn lớp 12A và 12B dính với nhau. Ta có như 12X chỉ có 4 bạn. rồi lại làm xen kẽ. Chọn 2 bạn dính nhau và hoán vị 2 bạn đó có 12 cách, 5 bạn 12C tạo ra 4 khe để 4 bạn của lớp 12X đứng vào nên có tất cả là 12.5!.4! = 34560

Đáp án cần chọn là A

22 tháng 2 2018

Đáp án A.

Kí hiệu học sinh các lớp 12A, 12B,12C

lần lượt là A,B,C.

Ta sẽ xếp 5 học sinh của lớp 12C trước,

khi đó xét các trường hợp sau:

TH1: CxCxCxCxCx với x thể hiện là

ghế trống.

Khi đó, số cách xếp là 5!5! cách.

TH2: xCxCxCxCxC giống với TH1

⇒  có 5!5! cách xếp.

TH3: CxxCxCxCxC với xx là hai ghế

trống liền nhau.

Chọn 1 học sinh lớp 12A và 1 học sinh

lớp 12B vào 2 ghế trống ⇒ 2.3.2! cách

xếp. Ba ghế trống còn lại ta sẽ xếp 3 học

sinh còn lại của 2 lớp 12A-12B

⇒  3! cách xếp.

Do đó, TH3 có 2.3.2!.3!.5! cách xếp. 

Ba TH4. CxCxxCxCxC.

TH5. CxCxCxxCxC.

TH6. CxCxCxCxCxx tương tự TH3.

Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360

cách xếp cho các học sinh.

Suy ra xác suất cần tính là  P = 63360 10 ! = 11 630 .

1 tháng 11 2018

Đáp án A

Xếp 10 học sinh thành hàng ngang: 10!

Xếp 5 học sinh của lớp 12C: 5!

Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người

TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!

TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!

19 tháng 6 2019

Đáp án A

Xếp 10 học sinh thành hàng ngang: 10!

Xếp 5 học sinh của lớp 12C: 5!

Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người

TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!

TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!

⇒ p = 5 ! ( 2.5 ! + 2.3.2.4.3 ! ) 10 ! = 11 630