Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Chọn 5 học sinh từ đội văn nghệ của nhà trường, ta xét các trường hợp
TH1. 1 học sinh lớp 12A, 2 học sinh lớp 12B và 2 học sinh lớp 12C → có C 4 1 . C 3 2 . C 2 2 = 12 cách.
TH2. 2 học sinh lớp 12A, 1 học sinh lớp 12B và 2 học sinh lớp 12C → có C 4 2 . C 3 1 . C 2 2 = 18 cách
TH3. 3 học sinh lớp 12A, 1 học sinh lớp 12B và 1 học sinh lớp 12C → có C 4 3 . C 3 1 . C 2 1 = 24 cách.
TH4. 1 học sinh lớp 12A, 3 học sinh lớp 12B và 1 học sinh lớp 12C → có C 4 1 . C 3 3 . C 2 1 = 8 cách.
TH5. 2 học sinh lớp 12A, 2 học sinh lớp 12B và 1 học sinh lớp 12C → có C 4 2 . C 3 2 . C 2 1 = 36 cách.
Đáp án C
TH1: 4 học sinh được chọn thuộc một lớp:
+ Lớp A có C 5 4 = 5 cách chọn.
+ Lớp B có C 4 4 = 1 cách chọn.
Trường hợp này có: 6 cách chọn.
TH2: 4 học sinh được chọn thuộc 2 lớp:
+ Lớp A và B: C 9 4 − C 5 4 + C 4 4 = 120 có .
+ Lớp B và C : C 7 4 − C 4 4 = 34 có
+ Lớp C và A: C 8 4 − C 5 4 = 65 có
Trường hợp này có 219 cách chọn.
Vậy có 225 cách chọn thỏa yêu cầu bài toán.
Gọi n là số học sinh nữ của lớp n ∈ N * , n ≤ 28 .
Số cách chọn 3 học sinh bất kì là cách. Suy ra số phần tử của không gian mẫu n Ω = C 30 3
Gọi A là biến cố “chọn được 2 nam và 1 nữ”. Ta có n A = C 30 - n 2 C n 1
Theo đề
P A = 12 29 ⇔ C 30 - n 2 C n 1 C 30 3 = 12 29 ⇔ n - 14 n 2 - 45 n + 240 = 0 ⇔ n = 14 n = 45 ± 1065 2
So với điều kiện, chọn n = 14
Vậy lớp đó có 14 học sinh nữ.
Đáp án A
Coi 5 bạn của cả 12A và B vào một lớp 12X nào đó. Do số lượng ở đề nên ta có hai trường hợp
TH1. Các bạn 12C và 12X xen kẽ nhau. Có 5!.5!.2 = 28800 cách
TH2. Có hai bạn lớp 12A và 12B dính với nhau. Ta có như 12X chỉ có 4 bạn. rồi lại làm xen kẽ. Chọn 2 bạn dính nhau và hoán vị 2 bạn đó có 12 cách, 5 bạn 12C tạo ra 4 khe để 4 bạn của lớp 12X đứng vào nên có tất cả là 12.5!.4! = 34560
Đáp án cần chọn là A
Đáp án A.
Kí hiệu học sinh các lớp 12A, 12B,12C
lần lượt là A,B,C.
Ta sẽ xếp 5 học sinh của lớp 12C trước,
khi đó xét các trường hợp sau:
TH1: CxCxCxCxCx với x thể hiện là
ghế trống.
Khi đó, số cách xếp là 5!5! cách.
TH2: xCxCxCxCxC giống với TH1
⇒ có 5!5! cách xếp.
TH3: CxxCxCxCxC với xx là hai ghế
trống liền nhau.
Chọn 1 học sinh lớp 12A và 1 học sinh
lớp 12B vào 2 ghế trống ⇒ 2.3.2! cách
xếp. Ba ghế trống còn lại ta sẽ xếp 3 học
sinh còn lại của 2 lớp 12A-12B
⇒ 3! cách xếp.
Do đó, TH3 có 2.3.2!.3!.5! cách xếp.
Ba TH4. CxCxxCxCxC.
TH5. CxCxCxxCxC.
TH6. CxCxCxCxCxx tương tự TH3.
Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360
cách xếp cho các học sinh.
Suy ra xác suất cần tính là P = 63360 10 ! = 11 630 .
Đáp án A
Xếp 10 học sinh thành hàng ngang: 10!
Xếp 5 học sinh của lớp 12C: 5!
Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người
TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!
TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!
Đáp án A
Xếp 10 học sinh thành hàng ngang: 10!
Xếp 5 học sinh của lớp 12C: 5!
Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người
TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!
TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!
⇒ p = 5 ! ( 2.5 ! + 2.3.2.4.3 ! ) 10 ! = 11 630
Đáp án là C