K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

A không là số nguyên tố cũng không là hợp số thì a = 0 hoặc a = 1.

Vì abcd¯ là một số có bốn chữ số nên a ≠ 0 . Do đó a =1.

Dư trong phép chia 105 cho 12 là 9 nên b = 9.

Số nguyên tố lẻ nhỏ nhất là 3. Vậy c = 3.

 

vì a ko fai là SNT cũng ko fai là HSỐ=> a thuộc tập hợp 0 và 1 mà a là số dứng đầu cho nên a ko thể là 0 => a =1
105: 12 đc số dư là 9 => b= 9
vì c lầ SNT lẻ nhỏ nhất => c=3
 vì b=9; c=3 mà d là TBC của b và c => d = ( 9+ 3) :2 =6
=> mayd bay trực thăng ra đời năm 1936

8 tháng 8 2016

A vì phải là số tự nhiên >1 và đây ko phải toán lớp 7

8 tháng 8 2016

C nha bn

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
24 tháng 6 2021

Cả 3 đều đúng

24 tháng 6 2021

cả 3 nha

Mình thật sự không biết đây là dạng toán lớp mấy... Dăng đại vào toán 7, mong các bạn giúp đỡ ạ! Cảm ơn nhiều!Bài 1: Một giải bóng đá có n đội tham gia thi đấu vòng tròn 1 lượt ( 2 đội bất kỳ đấu với nhau đúng 1 trận). Đội thắng được 3 điểm và đội thua không được điểm nào và đội hòa được 1 điểm. Kết thúc giải thưởng người ta nhận thấy rằng: số trận thắng thua...
Đọc tiếp

Mình thật sự không biết đây là dạng toán lớp mấy... Dăng đại vào toán 7, mong các bạn giúp đỡ ạ! Cảm ơn nhiều!

Bài 1: Một giải bóng đá có n đội tham gia thi đấu vòng tròn 1 lượt ( 2 đội bất kỳ đấu với nhau đúng 1 trận). Đội thắng được 3 điểm và đội thua không được điểm nào và đội hòa được 1 điểm. Kết thúc giải thưởng người ta nhận thấy rằng: số trận thắng thua gấp đôi trận hòa và tổng số điểm của các đội là 176. Tìm n?

Bài 2: Một nước có 20 sân bay mà khoảng cách giữa 2 sân bay nào cũng khác nhau, mỗi máy bay cất cánh từ 1 sân bay và bay đến sân bay nào gần nhất. C/m trên bất kì sân bay nào cũng không thể có quá 3 máy bay đến.

Thanksssssssssssssssssssssssssssssssssss ạ.............................. !!!!!!!!!!!!!!!!!!!!!

vui

1
6 tháng 11 2016

Bài này quen quá, hình như là toán lớp 5 thì phải

1/ Ta có: Trận thắng 3 điểm, trận hòa 2 điểm, trận thua 1 điểm

Số trận thắng-thua gấp đôi số trận hòa

Tổng số điểm là 176 điểm

Tỉ số điểm cho trận thắng-thua và hòa là:

(3x2) / (2x1) = 3/1

Tồng số phần bằng nhau: 3+1=4 (phần)

Số điểm cho các đội hòa là:

176 / 4 = 44 (điểm)

Số trận hòa là: 44 / 2 = 22 (trận)

Số điểm cho các đội thắng-thua là:

176 - 44 = 132 (điểm)

Số trận thắng-thua là:

132 / 3 = 44 (trận)

Tổng số các trận đấu là: 44+22 = 66 (trận)

Do n là số đội nên

n.(n-1) : 2

Ta được:

n.(n-1) : 2 = 66

n.(n-1) = 66.2 = 132

Do n và n-1 là 2 số tự nhiên liên tiếp

nên 132 = 12.11

=> n = 12

Vậy có 12 đội thi đấu

27 tháng 10 2020

Đề ở trên là thắng 3đ, thua 0đ, hòa 1đ mà

22 tháng 9 2018

số TBC của a và c \(\Rightarrow2b=a+c\) 

\(1:c=1:2\left(1:b+2:d\right)\Rightarrow1:c\Rightarrow\left(d+2b\right):\left(2bd\right)\)

\(\Rightarrow2bd=c.\left(d+2b\right)\)

Thay \(2b=a+c\),ta có:

\(\left(a+c\right)d=c\left(d+a+c\right)\Rightarrow ad+cd+c^2\)

\(\Rightarrow ad=ac+c^2\Rightarrow ad=c\left(a+c\right)\Rightarrow ad=cb\Rightarrow a:b=c:d\)

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy

16 tháng 6 2019

Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.

(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.

 

Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.

Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:

Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì

a)     Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.

b)     Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ  modulo m.

Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác

            (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).

 

Ta có  

Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì

(ax1,a x2, …, axj(m))  cũng là một hệ thặng dư thu gọn modulo m.

 

Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.

 

Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.

~Hok tốt`

P/s:Ko chắc

17 tháng 6 2019

\(a< b< c< d< e< f\)

\(\Rightarrow a+c+e< b+d+f\)

\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)