Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a}{b} = \dfrac{c}{d}\) nên a.d = b.c
Ta suy ra được các tỉ lệ thức: \(\dfrac{a}{c} = \dfrac{b}{d};\dfrac{d}{b} = \dfrac{c}{a};\dfrac{d}{c} = \dfrac{b}{a}\)
\(\dfrac{a}{c}=\dfrac{b}{d}\\ \dfrac{a}{d}=\dfrac{c}{b}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
a: Thay x=-3 và y=2 vào (d), ta được:
-3a=2
hay a=-2/3
Vậy: y=-2/3x
b: Vì B thuộc đồ thị nên \(y_0=-\dfrac{2}{3}x_0\)
\(\dfrac{x_0-3}{y_0+2}=\dfrac{x_0-3}{-\dfrac{2}{3}x_0+2}=1:-\dfrac{2}{3}=\dfrac{-3}{2}\)
Theo định nghĩa đồ thị hàm số y = ax là một đường thẳng đi qua gốc tọa độ.
Đáp án cần chọn là: A
a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)
\( \Rightarrow ad = bc\) (luôn đúng)
\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)
Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)
Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=5\\a+b=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\a-2b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
Đồ thị hàm số y=ax(\(a\ne0\)) là đường thẳng đi qua gốc tọa độ
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra đẳng thức \(ad=bc\)
Số vô tỉ là số viết dưới dạng số thập phân vô hạn không tuần hoàn
Đồ thị hàm số y = ax ( a khác 0 ) là đường thẳng đi qua gốc tọa độ
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra đẳng thức ad = bc
Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn