K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Ta có  y’= 6x2+2mx-12

Do ∆ ' = m 2 + 72 > 0 ,   ∀ m ∈ ℝ   nên hàm số luôn có hai điểm cực trị x1; x2 với x1; x2 là hai nghiệm của phương trình y’=0 .

 Theo định lí Viet, ta có  x 1 + x 2 = - m 3

Gọi A( x1; y1) và B( x2; y2) là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán

⇔ x 1 = x 2 ⇔ x 1 = - x 2 (do x1 khác x2 )

⇔ x 1 + x 2 = 0 ⇔ - m 3 = 0 ⇔ m = 0

Chọn D.

14 tháng 9 2023

\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)

\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)

Chọn a

27 tháng 8 2017

đầu bài có vấn đề cmnr vs y=-x^3+3mx+1 =>y'=-3x^2+3m => x=+-can(m) vs x=-can(m)=> y=-(can(m))^3+3m(-can(m)+1 =-4can(m)^3+1 vs x=can(m) =>y=4can(m)^3+1 . đặt can(m)=a => điểm A(-a;-4a^3+1) B(a;4a^3+1) vì tạo tam giác vuông nên tích vecto OA*OB=0 => -a^2 +(1+4^3a)(1-4a^3)=0<=>-a^2 +1- 16a^6 =0đặt a^2=b => -16b^3-b+1=0 => b=1/4( nhận) b=-1/4 ( loại)=> x^2=1/4 mà can(m)=x =>m=x^2 =1/4 kq là 1/4 nên k có kq nếu đầu bài là y=-x^3+3m^2x+1 thì ra 1/2. k biết mk sai hay đề sai nữa

1 tháng 9 2018

(-1)^3=-1 bạn ơi

 

 

NV
23 tháng 9 2020

a.

Pt hoành độ giao điểm: \(m-x=\frac{x-1}{x+1}\)

\(\Leftrightarrow\left(m-x\right)\left(x+1\right)=x-1\)

\(\Leftrightarrow x^2-\left(m-2\right)x-m-1=0\left(1\right)\)

Đường thẳng cắt đồ thị khi và chỉ khi (1) có nghiệm

\(\Leftrightarrow\Delta'=\left(m-2\right)^2+4\left(m+1\right)\ge0\)

\(\Leftrightarrow m^2+8\ge0\) (luôn đúng với mọi m)

Đáp án C đúng

b.

\(y'=3x^2-6mx\)

Hàm số có 2 cực trị \(\Leftrightarrow m\ne0\)

Tiến hành chia y cho y' là lấy phần dư ta được pt đường thẳng qua 2 cực trị có dạng: \(y=-2m^2x+3m^3\Leftrightarrow2m^2x+y-3m^3=0\)

Đường thẳng đã cho song song d khi và chỉ khi:

\(\left\{{}\begin{matrix}2m^2=2\\-3m^3\ne3\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Đáp án A đúng

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Đặt \(2^x=t(t>0)\Rightarrow t^2-2mt+2m=0\)

Theo định lý Viete, nếu pt có hai nghiệm $t_1,t_2$ thì: \(t_1t_2=2m\Leftrightarrow 2^{x_1}2^{x_2}=2m\)

\(\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 2^{3}=2m\Leftrightarrow m=4\)

Thử lại thấy đúng

Đáp án B.

18 tháng 5 2018

A nha

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

Ta có: \(y=x^4-2x^2+2\Rightarrow y'=4x^3-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Do đó 3 điểm cực trị của đồ thị hàm số là:

\(A(0;2);B(1;1);C(-1;1)\)

\(\Rightarrow \left\{\begin{matrix} AB=\sqrt{(0-1)^2+(2-1)^2}=\sqrt{2}\\ BC=\sqrt{(1--1)^2+(1-1)^2}=2\\ AC=\sqrt{(0--1)^2+(2-1)^2}=\sqrt{2}\end{matrix}\right.\)

Vì \(AB^2+AC^2=BC^2\) nên tam giác $ABC$ là tam giác vuông tại $A$

\(\Rightarrow S_{ABC}=\frac{AB.AC}{2}=\frac{\sqrt{2}.\sqrt{2}}{2}=1\)

Đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 2:

Để hàm số đạt cực trị tại $x=1$ thì:

\(y'=-3(m^2+5m)x^2+12mx+6=0\) tại $x=1$

hay \(-3(m^2+5m)+12m+6=0\)

\(\Leftrightarrow m^2+m-2=0\)

\(\Leftrightarrow m=1; m=-2\)

Với m=1:

Hàm số trở thành:

\(y=-6x^3+6x^2+6x-6\)

\(y'=-18x^2+12x+6=0\Leftrightarrow x=1; x=-\frac{1}{3}\)

Lập bảng biến thiên ta thấy thỏa mãn

Với m=-2

Hàm trở thành: \(y=6x^3-12x^2+6x-6\)

\(y'=18x^2-24x+6=0\Leftrightarrow x=1; x=\frac{1}{3}\)

Lập bảng biến thiên ta thấy tại $x=1$ đạt cực tiểu nên không thỏa mãn

Vậy m=1

Đáp án A