K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Đáp án A

Với x = − 1  ta có  y − 1 = − 4   . Vậy hàm số luôn đi qua điểm M − 1 ; − 4  ( có thể giải theo điểm cố định M x 0 ; y 0  )

28 tháng 2 2017

9 tháng 3 2018

Đáp án A

Xét phương trình hoành độ giao điểm:

        x + 1 2 x + 1 = m x + m + 1 2 ⇔ 4 m x 2 + 4 m x + m − 1 = 0   1

Phương trình (1) có 2 nghiệm  x A ; x B ⇔ Δ ' = 4 m 2 − 4 m m − 1 = 4 m > 0 ⇔ m > 0.

Khi đó giao điểm của 2 đồ thị là A x A ; m x A + m + 1 2 ; B x B ; m x B + m + 1 2  

với  x A + x B = − 1 ; x A . x B = m − 1 4 m

Ta có O A 2 + O B 2 = x A 2 + m x A + m + 1 2 2 + x B 2 + m x B + m + 1 2 2 = m 2 + 2 m + 1 2 m = 1 + 1 2 m + 1 m ≥ 1 + 1 2 .2 = 2

( vì m > 0 ,  theo Cauchy ta có m + 1 m ≥ 2 . Dấu bằng xảy ra khi  m = 1

23 tháng 9 2019

Đáp án A

Xét phương trình hoành độ giao điểm:

 

 

21 tháng 11 2018

Chọn A

26 tháng 8 2019

10 tháng 8 2018

 

Đáp án A.

Phương trình hoành độ giao điểm của c m và d : x 3 - 3 x 2 + ( m + 1 ) x + 1 = x + 1  

⇔ x 3 - 3 x 2 + m x = 0 ⇔ x = 0 x 2 - 3 x + m = 0 *

Để  c m cắt d tại ba điểm phân biệt  P ( 0 ; 1 ) , M , N thì phương trình (*) phải có hai nghiệm phân biệt x 1 , x 2 khác 0  ⇔ 0 2 - 3 . 0 + m ≢ 0 ∆ = ( - 3 ) 2 - 4 m > 0 ⇔ m ≢ 0 m < 9 4

 

 Giả sử M ( x 1 ; x 1 + 1 ) vàvới N ( x 2 ; x 2 + 1 ) là nghiệm của phương trình (*).

Theo định lý Vi-ét ta có  x 1 + x 2 = 3 x 1 x 2 = m

Để tam giác OMN vuông tại O thì  O M   → . O N   → = 0 ⇔ x 1 x 2 + ( x 1 + 1 ) ( x 2 + 1 ) = 0

⇔ 2 x 1 x 2 + ( x 1 + x 2 ) + 1 = 0 ⇔ 2 m + 4 = 0 ⇔ m = - 2  (thỏa mãn)

 

 

14 tháng 7 2018

18 tháng 8 2017

22 tháng 10 2019

Chọn D.

Phương pháp:

+) Lấy y chia y’, phần dư chính là phương trình tiếp tuyến đi qua 2 điểm cực trị của hàm số.

+) Xét hàm số và tìm GTLN của hàm số bằng cách lập BBT.

Cách giải:

=> Phương trình đường thẳng đi qua 2 điểm cực trị của hàm số là