K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có DE//BC

nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)

=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)

=>\(AD=8\cdot\dfrac{3}{4}=6\)

AB=AD+BD

=>AB=6+8=14

b: Xét ΔABC có DE//BC

nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)

nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)

=>\(AE^2=EC^2\)

=>AE=EC

=>E là trung điểm của AC

Xét ΔABC có

E là trung điểm của AC

ED//BC

Do đó: D là trung điểm của AB

9 tháng 12 2023

a) Ta có AB // BC, nên theo định lí đường thẳng song song, ta có:

AE/EC = AB/BC = AB/DB (vì DB = BC)

Với AE/EC = 3/4, ta có:

3/4 = AB/DB

AB = (3/4) * DB = (3/4) * 8 = 6

 

b) Ta biết rằng D là trung điểm của AB, nên AD = DB/2 = 8/2 = 4.

Tương tự, E là trung điểm của AC, nên AE = EC/2.

Ta cần chứng minh rằng AD/DB = EC/AE.

Ta có:

AD/DB = 4/8 = 1/2

EC/AE = 2 * EC/2 * AE = 2 * EC/2 * (EC/2) = EC^2/(2 * AE)

Vì AE/EC = 3/4, nên AE = (3/4) * EC.

Thay vào biểu thức trên, ta có:

EC/AE = EC^2/(2 * (3/4) * EC) = EC/2

Vậy ta có AD/DB = EC/AE.

19 tháng 6 2017
Theo bài ra, tổng số cò và số học sinh của lớp ba là: 81Bài toán lại cho biết số cò và số học sinh là hai số liên tiếp, trong đó số cò ít hơn số học sinh.Mà hiệu của hai số liên tiếp bằng 1, nên hiệu của số học sinh và số cò là: 1Ta có:Số học sinh của lớp ba là:(81 + 1) : 2 = 41 (học sinh)Số cò là:81 - 41 = 40 (con)Đáp số:..................................
19 tháng 6 2017

= 40 nha, đúng thì tk mình nha bạn

20 tháng 9 2019

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.

15 tháng 4 2019

Từ khay đầy, có thể rót ra đúng một nửa.

Có thể rót nước còn lại ở khay ban đầu để có đúng 1/6 khay nước.

Nếu có thêm một dụng cụ chứa khác thì có thể gộp những phần nước khác nhau của khay tức là một bội của 1/6 .Chắng hạn: 1/3 , 2/3 , 5/6 …