Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
⇒ΔECA=ΔEDA(Cạnh huyền, cạnh góc vuông)
⇒ˆCAE=ˆDAE (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, ΔECA=ΔEDA⇒EC=ED
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.
a: Xét ΔACE vuông tại C và ΔADE vuông tại D có
AE chung
AC=AD
Do đó: ΔACE=ΔADE
Suy ra: \(\widehat{CAE}=\widehat{DAE}\)
hay AE là tia phân giác của \(\widehat{CAB}\)
b: Ta có: ΔACE=ΔADE
nên EC=ED
Ta có: AC=AD
nên A nằm trên đường trung trực của CD(1)
Ta có: EC=ED
nên E nằm trên đường trung trực của CD(2)
Từ (1) và (2) suy ra AE là đường trung trực của CD
a, xét 2 tam giác vuông AEC và AED có:
AC=AD(gt)
AE cạnh chung
=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)
=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)
b, xét t.giác AIC và t.giác AID có:
AI cạnh chung
\(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)
AC=AD(gt)
=> t.giác AIC=t.giác AID(c.g.c)
=> IC=ID=> I là trung điểm của CD(1)
\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)
từ (1) và (2) suy ra AE là trung trực của CD
mk vẽ hình ko đc chuẩn lắm
a,Áp dụng đ/l pytago vào tam giác vuông ABC có
AB2+AC2=BC2
92 +122=BC2
225=BC2
=> BC = 15cm
b, Xét tam gics vuông ABC và tam giác vuông ADC có:
BA=AD (GT)
AC : cạnh chung
=> tam gics vuông ABC = tam giác vuông ADC ( 2 cạnh góc vuông)
c,ta có:tam gics vuông ABC = tam giác vuông ADC (cmt)
=> \(\widehat{BCA}=\widehat{DCA}\)(.2 góc t/ứ...)
xét tam gics vuông FAC và tam giác vuông EAC có:
\(\widehat{BCA}=\widehat{DCA}\)(CMT)
AC : cạnh chung
=>tam gics vuông FAC = tam giác vuông EAC( cạnh huyền góc nhọn)
=> CE = CF ( ...2 cạnh t/ứ.)
* , CM EF // DB
bạn chứng minh 2 tam gics CEF và CBD cân tại C ( cái này cm dễ mà)
xog => 2 góc ở đáy của 2 tam giác = nhau r dùng đ/lí tổg 2 góc của 1 tamgiác
rồi => 2 góc đồng vị => sog sog
*, ý d bạn tự làm nhé !
bạn tự vẽ hình nha.
a) tam giác abc vuông tại a
=> BC mũ 2 = AB mũ 2 + Ac mũ 2
Hay BC mũ 2 = 9 mũ 2 + 12 mũ 2
BC mũ 2= 81+ 144
BC mũ 2= 225
=> BC = 15
b) Xét hai tam giác vuông tam giác ABC và tam giác ADC có
AC là cạnh chung
AB = AD (gt)
Do đó tam giác ABC = tam giác ADC ( 2 cạnh góc vuông )
c) Ta có tam giác ABC = tam giác ADC ( cmt (
=> Góc BCA = góc DCA ( 2 góc tương ứng )
Xét hai tam giác vuông tam giác CFA và tam giác CEA có
AC là cạnh chung
góc C1 = góc C2 ( cmt )
Do đó tam giác CFA = tam giác CEA ( cạnh huyền -góc nhọn)
=> CE = CF ( 2 cạnh tương ứng )
Gọi N là giao điểm của EF và AC
Xét hai tam giác CFN và tam giác CEN có
CE = CF ( cmt )
C1 = C2 ( cmt )
CN là cạnh chung
Do đó tam giác CFN = tam giác CEN ( c-g-c)
=> góc CNF = góc CNE ( 2 góc tương ứng )
mà góc CNF + góc CNE = 180 độ ( kề bù )
=> góc CNF = góc CNE = 180 độ : 2= 90 độ
=> FE vuông góc với CA
Mà CA vuông góc với BD
=> EF // DB
Tương tự : CD < CE <=> AD < AE
Chứng minh tg ACF = tg ACB (cạnh góc vuông _ góc nhọn) (1) -----Phần này tự chứng minh------
=> CF = CB
mà CB < CD => CF < CD
(1) => AF = AB
Vì CB < CD nên AB < AD hay AF < AD
dùng tính chất đường xiên đường chiếu j j đó là được mà