\(D=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(D=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)

\(=2015-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=2015-\left(1-\frac{1}{2016}\right)\)

\(=2015-\frac{2015}{2016}\)

TO LẮM 

17 tháng 10 2019

Tuyển gái dâm

20 tháng 6 2016

\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a\left(a+1\right)}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)

\(=1-\frac{1}{a+1}\)

20 tháng 6 2016

\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a\left(a+1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)

\(=\frac{1}{1}-\frac{1}{a+1}=\frac{a+1}{a+1}-\frac{1}{a+1}=\frac{a}{a+1}\)

28 tháng 8 2018

1) \(\left[6.\left(-\frac{1}{3}\right)^3-3\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{-1}{27}+1+1\right]:\left(\frac{-1}{3}-\frac{3}{3}\right)\)

\(=\left[\frac{-2}{9}+2\right]:\frac{-4}{3}\)

\(=\left[\frac{-2}{9}+\frac{18}{9}\right]:\frac{-4}{3}\)

\(=\frac{16}{9}:\frac{-4}{3}\)

\(=\frac{-4}{3}.\)

2)  \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2018}{2019}.\)

23 tháng 6 2019

a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)

\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)

                                                              \(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)

b, Làm tương tự nha bn 

                                 

26 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

15 tháng 7 2018

\(\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{1995\cdot1996}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{1995\cdot1996}\right)\)

\(=\left(1995\cdot1\right)-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1995}-\frac{1}{1996}\right)\)

\(=1995-\left(1-\frac{1}{1996}\right)\)

\(=1995-\frac{1995}{1996}\)