K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

a) xét tam giác EKB vuông tại K (EK\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(\perp\)\(\perp\perp\) vuông góc với AB) có

EK là cạnh góc vuông

EB là cạnh huyền

Vì trong \(\Delta\)tam giác vuông, cạnh huyền là cạnh lớn nhất.

suy ra: DC > DE

mà EK = CE (tam giác ACE = tam giác AKE)

suy ra: CE < EB

15 tháng 10 2016

a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
        AD = AB (giả thuyết)

       \(\widehat{A_1}=\widehat{A_2}=90^0\) 

      AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)

                \(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\) 
Hay DE vuông góc với BC
 

          

1 tháng 12 2016

A B C D E N

 

\(a.\)

Xét \(\Delta ADE\)\(\Delta ABC\) có :

\(AD=AB\) \(\left(gt\right)\)

\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)

\(AE=AC\) \(\left(gt\right)\)

Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)

\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )

\(b.\)

Ta có :

\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )

\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )

\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)

Hay \(DE\perp BC\)

Vậy \(DE\perp BC\)

 

 

 

2 tháng 12 2016

Tam giác ABC vuông tại A có:

ABC + ACB = 900

ABC + 400 = 900

ABC = 900 - 400

ABC = 500

Xét tam giác ABD và tam giác EBD có:

AB = EB (gt)

ABD = EBD (BD là tia phân giác của ABE)

BD chung

=> Tam giác ABD = Tam giác EBD (c.g.c)

Xét tam giác AKB và tam giác BDA có:

KAB = DBA (2 góc so le trong, AK // BD)

AB chung

ABK = BAD (= 900)

=> Tam giác AKB = Tam giác BDA (g.c.g)

=> AK = BD (2 cạnh tương ứng)

BAD = BED (Tam giác ABD = Tam giác EBD)

mà BAD = 900 (tam giác ABC vuông tại A)

=> BED = 900

=> DE _I_ BC

Tam giác FBC có: CA là đường cao (CA _I_ BF)

BH là đường cao (BH _I_ FC)

mà CA cắt BH tại D

=> D là trực tâm của tam giác FBC

=> FD là đường cao của tam giác FBC

=> FD _I_ BC

mà ED _I_ BC (chứng minh trên)

=> \(FD\equiv ED\)

=> E, D, F thẳng hàng

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó:ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

NM
19 tháng 2 2022

a. ta có : tam giác AHB vuông tại H nên

\(AH^2=AB^2-BH^2=12^2-7,2^2=9,6^2\) Vậy AH =9,6cm

b. Ta có : ABC phải tam giác vuông vì \(AB^2=BH.BC\)