Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}==\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}\)
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{1}\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)
A = (5x - 3y + 1)(7x + 2y - 2) = 0
a) thay y = 2 vào biểu thức, ta có:
<=> (5x - 3.2 + 1)(7x + 2.2 - 2) = 0
<=> (5x - 5)(7x + 2) = 0
<=> 5x - 5 = 0 hoặc 7x + 2 = 0
<=> 5x = 5 hoặc 7x = -2
<=> x = 1 hoặc x = -2/7
b) thay x = -2 vào biểu thức, ta có:
<=> [5.(-2) - 3y + 1][7.(-2) + 2y - 2) = 0
<=> [(-10) - 3y + 1][(-14) + 2y - 2] = 0
<=> (-3y - 9)(2y - 16) = 0
<=> -3y - 9 = 0 hoặc 2y - 16 = 0
<=> -3y = 9 hoặc 2y = 16
<=> y = -3 hoặc y = 8
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài
Ta có : \(2x^2+2y^2-2xy+2x+2y+2=0\)
=>\(x^2-2xy+y^2+x^2+2x+1+y^2+2y+1=0\)
=>\(\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{\begin{matrix}x-y=0< =>x=y\\x+1=0=>x=-1\\y+1=0=>y=-1\end{matrix}\right.\)
Thế x=-1;y=-1 vào biểu thức , ta có :
\(\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1+0=1\)
\(2x^2+2y^2-2xy+2x+2y+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-y\right)^2=0\Leftrightarrow x=y\\\left(x+1\right)^2=0\Leftrightarrow x=-1\\\left(y+1\right)^2=0\Leftrightarrow y=-1\end{matrix}\right.\)
\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)
\(A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}\)
\(A=1+0=1\)
câu 5 kq =0
câu 6: góc C=90 độ (tam giác vuông tại C)(Định lý Pytago)
câu 7: 0 giá trị
câu 8:x=1
câu 10: x=3;y=1
x+y=4
bye
nếu đúng tích cho mik nha
Mik cảm ơn trc
Bài 10:
\(P=2x^2-2xy+y^2+4x+4=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)\)
\(P=\left(x-y\right)^2+\left(x+2\right)^2=0\)
ta có: \(\left\{\begin{matrix}\left(x-y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P=0\Leftrightarrow\left\{\begin{matrix}x=-2\\y=x=-2\end{matrix}\right.\)
\(\Rightarrow A=\left(-2\right)^4+\left(-2\right)^4=32\)