Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2300 = (23)100 = 8100 < 9100 = (32)100 = 3200
=> 2300 < 3200
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\) (1)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\) (2)
Từ (1) và (2)
\(\Rightarrow2^{300}< 3^{200}\)
Vậy \(2^{300}< 3^{200}\).
\(2^{30}+3^{30}+4^{30}=2^{30}\left(2^{30}+1\right)+3^{30}>2^{30}\left(2^{30}+1\right)>2^{30}\cdot3^{11}=3\cdot24^{10}\)
Ta có:
\(\left(2x-1\right)^2+\left|2y-x\right|-8=12-5.2^2\)
=> \(\left(2x-1\right)^2+\left|2y-x\right|=12-20+8\)
=> \(\left(2x-1\right)^2+\left|2y-x\right|=0\)
nx:
\(\left(2x-1\right)^2\ge0với\forall x\)
\(\left|2y-x\right|\ge với\forall x,y\)
=> \(\left(2x-1\right)^2+\left|2y-x\right|\ge0với\forall x,y\)
Do đó:\(\left(2x-1\right)^2+\left|2y-x\right|=0\)
<=>\(\left\{\begin{matrix}2x-1=0\\2y-x=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}2x=1\\2y=2\end{matrix}\right.\)
<=>\(\left\{\begin{matrix}x=\frac{1}{2}\\2y=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
Vậy x=1/2;y=1/4
a)(|x-2|-3)(5+|x|)=0
<=>|x-2|-3=0 hoặc 5+|x|=0
*)Xét |x-2|-3=0 <=>|x-2|=3
=>x-2=±3
Với x-2=3 =>x=5
Với x-2=-3 =>x=-1
*)Xét 5+|x|=0
=>|x|=-5 (mà \(\left|x\right|\ge0>-5\) với mọi x)
=>vô nghiệm
(2x-1)2=1-2x
<=>4x2-4x+1=1-2x
<=>4x2-2x=0
<=>2x(2x-1)=0
<=>x=0 hoặc x=\(\frac{1}{2}\)
Ta có:
\(2^{603}=2^3\cdot2^{600}=2^3\cdot\left(2^6\right)^{100}=8\cdot64^{100}\)
\(3^{402}=3^2\cdot\left(3^4\right)^{100}=9\cdot81^{100}\)
Vì 8 < 9 và \(64^{100}< 81^{100}\)
=> \(2^{603}< 3^{402}\)
많은 감사