Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . dễ c/m được tam giác AOF đồng dạng với ADB(gg)
b. Dễ c/m được tứ giác BHKD nt do DKB=DHB=90 cùng nhìn cạnh BD
nên DHK=KBD(cùng nhìn cạnh DK)
mà DCB=DBK(cùng phụ với KBC)
từ đó ta được DHK=DCO hay tứ giác KHOC nt
c, theo mk câu c sai đề vì nếu cần c.m \(\frac{BD}{DM}-\frac{DM}{AM}=1\Leftrightarrow DB\cdot AM=DM^2+DM\cdot AM=DM\left(AM+DM\right)=DM\cdot AD\)
(đến đây vẫn đúng nha bạn)
ta thấy AMC đồng dạng với ADB hay \(\frac{AM}{AD}=\frac{MC}{DB}\Rightarrow AM\cdot BD=CM\cdot AD\)\(\Rightarrow CM\cdot AD=DM\cdot AD\Leftrightarrow CM=DM\)(vô lý )
nên mk cho là đề sai nếu mk có sai bạn chỉ mk vs ạ
Cho đường tròn tâm OO bán kính OAOA. Điểm CC thuộc đoạn thẳng AOAO (CC khác AA và OO). Đường thẳng vuông góc với AOAO tại CC cắt đường tròn (O)(O) tại hai điểm DD và KK. Tiếp tuyến tại DD của đường tròn (O)(O) cắt đường thẳng AOAO tại EE. Tiếp tuyến tại AA của đường tròn (O)(O) cắt đường thẳng DEDE tại FF. Gọi HH là giao điểm của hai đường thẳng FOFO và DKDK.
Chứng minh các tứ giác AFDOAFDO và AHOKAHOK là tứ giác nội tiếp.
xet tu giac AFDO co: goc FAO=FDO=90(gt)
=> tu giac AFDO noi tiep ( tong 2 goc doi dien bang 180)
vi OA vuong goc voi DK tai C (gt) va D,K thuoc (O)
=> OC la duong trung truc cua DK
=> tam giac ODK can tai O
=> goc ODK = OKD (1)
Mat khac, ta lai co F nam ngoai (O);
FA va FD lan luot la cac tiep tuyen cua (O)
=> FO vuong goc voi AD
va ta thay DC vuong goc voi OA
nen H la truc tam cua tam giac OAD
=>AH vuong goc voi OD=> AH song song voi ED
=> goc HAO=DEO (dong vi) (2)
Ta thay goc DEO= 90- goc DOE (tong 3 goc trong tam giac DOE)
va goc ODK=90- goc DOE (tong 3 goc trong tam giac DOK)
=>goc ODK=DEO (3)
Tu (1);(2);(3)=> goc OAH=OKH
=>tu giac AHOK noi tiep
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó:CM=CA
hay C nằm trên đường trung trực của AM(1)
ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OC là đường trung trực của AM
hay OC⊥AM tại trung điểm của AM
=>K là trung điểm của AM
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
hay D nằm trên đường trung trực của MB(3)
ta có: OM=OB
nên O nằm trên đường trung trực của MB(4)
Từ (3) và (4) suy ra OD là đường trung trực của MB
=>OD⊥MB và I là trung điểm của MB
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác MKOI có \(\widehat{MKO}=\widehat{MIO}=\widehat{IMK}=90^0\)
nên MKOI là hình chữ nhật
b: Xét ΔMAC có
K là trung điểm của MA
I là trung điểm của MB
Do đó: KI là đường trung bình
=>KI//AB
hay KI⊥AC