Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)
\(\Rightarrow AC+BD=AM+BM=AB\)
b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)
\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)
\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)
\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)
c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)
Mà \(CD=2R;AM=AC;BM=BD\)
Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)
a) \(y=m\left(2x-1\right)+3-2x,\forall m\)
\(\Leftrightarrow m\left(2x-1\right)+3-2x-y=0,\forall m\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3-2x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)
Vậy khi \(m\)thay đổi đường thẳng \(\left(d\right)\)luôn đi qua điểm có tọa độ \(\left(\frac{1}{2},2\right)\).
b) \(y=m\left(2x-1\right)+3-2x=\left(2m-2\right)x+3-m\)
\(\Leftrightarrow y-\left(2m-2\right)x+m-3=0\)
Khoảng cách từ điểm \(O\left(0,0\right)\)đến đường thẳng \(d\)là:
\(d=\frac{\left|m-3\right|}{\sqrt{\left(2m-2\right)^2+1^2}}\Leftrightarrow d^2\left(4m^2-8m+5\right)=m^2-6m+9\)
\(\Leftrightarrow m^2\left(4d^2-1\right)-2m\left(4d^2-3\right)+5d^2-9=0\)(1)
Với \(m=0\): \(d=\frac{3\sqrt{5}}{5}\).
Với \(m\ne0\)ta coi \(m\)là phương trình bậc \(2\)ẩn \(m\)tham số \(d\).
Để phương trình có nghiệm thì
\(\Delta'\ge0\Leftrightarrow\left(4d^2-3\right)^2-\left(5d^2-9\right)\left(4d^2-1\right)\ge0\)
\(\Leftrightarrow17d^2-4d^4\ge0\)
\(\Leftrightarrow\frac{-\sqrt{17}}{2}\le d\le\frac{\sqrt{17}}{2}\).
Vây GTLN cần tìm là \(d=\frac{\sqrt{17}}{2}\).
A D B C O
ta có \(\frac{1}{AO^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow AD=\sqrt{117}cm\)
ta có \(\widehat{ADB}=\widehat{ACD}\text{ (do cùng phụ với góc }\widehat{CDB}\text{)}\) nên \(\Delta ADB~\Delta DAC\left(g.g\right)\Rightarrow\frac{DA}{DC}=\frac{AB}{AD}\Rightarrow DC=\frac{DA^2}{AB}=\frac{9\sqrt{13}}{2}\)
ta có \(S_{ABCD}=\frac{1}{2}AD\left(AB+CD\right)=\frac{507}{4}cm^2\)