Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B F F'
Giải:
\(\Delta OAB\) đồng dạng \(\Delta OA'B'\)\(\Rightarrow\frac{AB}{A'B'}=\frac{OA}{OA'}\left(1\right)\)
\(\Delta FOI\) đồng dạng \(\Delta F'A'B'\)
\(\Rightarrow\frac{OI}{A'B'}=\frac{F'O}{F'A'}\Leftrightarrow\frac{OI}{A'B'}=\frac{F'O}{OA'-OF'}\left(2\right)\)
Mà \(OI=AB\) nên \(\left(1\right)=\left(2\right)\)
\(\frac{OA}{OA'}=\frac{F'O}{OA'-OF'}\)
\(\Rightarrow OA'=48cm\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{48}{16}=3\)
ta có R1nt[(R2ntR3)//R4]-> Rtđ=10 ôm->I=\(\dfrac{U}{Rt\text{đ}}\)=1,2 A
ta có R1ntR234->I1=I234=I=1,2 A
vì R23//R4->U23=U4=U234=I234.R234=1,2.4=4.8 V
vì R2ntR3->I2=I3=I23=\(\dfrac{U23}{R23}\)=\(\dfrac{4.8}{20}\)=0.24 A
I4=\(\dfrac{U4}{R4}\)=\(\dfrac{4.8}{5}\)=0.96 A
U1=I1.R1=1,2.6=7,2 V
U2=I2.R2=0,24.10=2,4V
U3=I3.R3=0,24.10=2,4V
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow mC\left(t_1-t\right)=m_2C\left(t-t_2\right)\)
\(\Leftrightarrow m\left(60-t\right)=t-20\)
\(\Leftrightarrow m=\frac{t-20}{60-t}\)
rót tiếp từ bình 2 sang bình 1 thì ta có:
Qtỏa=Qthu
\(\Leftrightarrow\left(m_1-m\right)C\left(t_1-t'\right)=mC\left(t'-t\right)\)
\(\Leftrightarrow5-m=m\left(59-t\right)\)
\(\Leftrightarrow5-\frac{t-20}{60-t}=\frac{\left(t-20\right)\left(59-t\right)}{60-t}\)
\(\Leftrightarrow5\left(60-t\right)-\left(t-20\right)=\left(t-20\right)\left(59-t\right)\)
\(\Leftrightarrow300-5t-t+20=59t-t^2-1180+20t\)
\(\Leftrightarrow t^2-84t+1500=0\)
giải phương trình bậc hai ở trên ta có:
t=58,2 độ C hoặc
t=25,75 độ C
b)từ hai t trên ta suy ra hai m như sau;
m=21,2kg(loại do trong bình một chỉ có 5kg)hoặc
m=0,62kg(nhận)
vậy đáp án đúng là:
a)25,75 độ C
b)0,62kg
V1=5lít=>m1=5kg
V2=1lít=>m2=1kg
Gọi:
t1:nhiệt độ ban đầu của b1
t2:nhiệt độ ban đầu của b2
t'1:nhệt độ cân bằng của b1
t'2:nhiệt độ cân bằng của b2
m:lượng nước rót wa lại
Theo ptcbn:
nhlg toa ra của m nước 80*C rót từ b1wa b2=nhlg thu vào của b2
Q1=Q2
m.c.(t1-t'2)=m2.c.(t'2-t2)
m.(t1-t'2)=m2.(t'2-t2)
m.(60-t'2)=1(t'2-20) (1)
60m-mt'2=t'2-20 (2)
Theo ptcbn:
nhlg tỏa ra của fần nước còn lại trong b1=nhlg thu vao của m nước có nhiệt độ là t'2 rót từ b2 wa b1
Q'1=Q'2
(m1-m).c.(t1-t'1)=m.c.(t'1-t'2)
(m1-m).(t1-t'1)=m.(t'1-t'2)
(5-m).(60-59)=m.(59-t'2)
5-m=59m-mt'2
60m-mt'2=5 (3)
Từ (2) và (3)
=>t'2-20=5
=>t'2=25
Thế t'2=25 vào (1)
(1)<=>m.(60-25)=1.(25-20)
35m=5
=>m=5/35=1/7=0,143 kg
Vậy lượng nước rót wa rót lại gần bằng 0,143 kg
Tóm tắt :
\(R_1=2R_2\)
\(U=16V\)
\(R_1//R_2\)
\(I_2=I_1+6\)
\(R_1;R_2=?\)
\(I_1;I_2=?\)
GIẢI :
Vì R1//R2 nên :
\(U=U_1=U_2=16V\)
Cường độ dòng điện qua R1 là :
\(I_1=\dfrac{U}{R_1}\)
Cường độ dòng điện qua R2 là :
\(I_2=\dfrac{U}{R_2}\)
Ta có : \(\dfrac{I_1}{I_2}=\dfrac{R_2}{R_1}\) (I và R là 2 đại lượng tỉ lệ nghịch)
Theo đề có : R1 = 4R2
Suy ra : \(\dfrac{R_2}{R_1}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{I_1}{I_2}=\dfrac{1}{4}=>4I_1=I_2\) (1)
Và : \(I_2=I_1+6\) (2)
Ta thay 4I1 ở (1) vào biểu thức chứa I2 ở (2) có :
\(4I_1=I_1+6\)
\(\Rightarrow I_1=\dfrac{6}{3}=2\left(A\right)\)
\(\Rightarrow I_2=I_1+6=2+6=8\left(A\right)\)
Điện trở R1 là :
\(U=I_1.R_1=>R_1=\dfrac{U}{I_1}=\dfrac{16}{2}=8\left(\Omega\right)\)
Điện trở R2 là :
\(U=I_2.R_2=>R_2=\dfrac{U}{I_2}=\dfrac{16}{8}=2\left(\Omega\right)\)
Vậy : \(\left\{{}\begin{matrix}R_1=8\Omega\\R_2=2\Omega\\I_1=2A\\I_2=8A\end{matrix}\right.\)
Vì I1=I1 và I2=I1+6 nên không thể mắc nối tiếp hai điện trở này
=> R1//R2
=> Vì R1//R2=>U1=U2=U=16V
=> I1=\(\dfrac{U1}{R1}=\dfrac{16}{4R2}=\dfrac{4}{R2}\)
=>I2=\(\dfrac{U2}{R2}=\dfrac{16}{R2}\)
Mặt khác ta có I2=I1+6=>\(\dfrac{16}{R2}=\dfrac{4}{R2}+6=>R2=2\Omega;R1=8\Omega\)
Vậy..........
1/ thực ra rất dễ
gọi x là số điện trở loại 3 ôm
y là số điện trở loại 5 ôm
vì mắc nối tiếp nên ta có Rtđ = R1+ R2
hay 3x + 5y = 55
<=> x = (55- 5y)/3
ta đặt y là t <=> y = t vậy x= (55-5t)/3
mà x và y sẽ >= 0 thuộc số nguyên và t < 11 => t= 0,1,2,3,4,5,6,7,8,9,10,11
ta lập bảng
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
x | 55/3 | 50/3 | 15 | 40/3 | 35/3 | 10 | 25/3 | 20/3 | 5 | 10/3 | 5/3 | 0 |
y | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
kết hợp điều kiện đã ghi trên ta thấy các cặp điện trở lần lượt loại 3 ôm và 5 ôm: 15-2; 10-5; 5-8; 0-11.
2/ tóm tắt
Bóng đèn ( 6V- 3W)
U=9 V
TÍNH CĐDĐ chạy qua biến trở ( Ib=?)
giải
vì đèn sáng bình thường nên:
Pđm= Pđ= 3 W
Uđm= Uđ= 6 V
Cường độ dòng điện chạy qua đèn:
Pđ= U*I => I= Pđ/U= 3/6= 0,5 A
vì đèn nối tiếp với biến trở nên: Iđ= Ib= 0,5 A
3/
Điện trở của bóng đèn:
P= U^2/R => R= U^2/P= 12^2/6=24 ôm
cường độ dòng điện chạy qua đèn là:
I= U/R= 6/24= 0,25 A
VẬY AMPE KẾ CHỈ 0,25 A
4/
Hiệu điện thế của R3:
P3= U3^2/R => U3= \(\sqrt{P\cdot R}\) = \(\sqrt{1,8\cdot10}\)= 3\(\sqrt{2}\) V
Vì R3 // (R1+R3) nên U3= U12=U= 3\(\sqrt{2}\) ôm
Điện trở tường đương của mạch nối tiếp:
R12= R1+R2= 2+8= 10 ôm
Điện trở tương đương của cả đoạn mạch:
Rtđ=\(\frac{R3\cdot R12}{R3+R12}\)= \(\frac{10\cdot10}{10+10}\)= 5 ôm
Công suất tiêu thụ cả mạch:
Pcm= U^2/Rtđ= 3\(\sqrt{2}\) ^2/5= 3,6 W
5/
Điện trở tương đương của mạch nối tiếp:
R12= R1+R2= 2+8=10 ôm
Điện trở tương đương cả mạch:
Rtđ= \(\frac{R3\cdot R12}{R3+R12}\)= \(\frac{10\cdot10}{10+10}\)= 5 ôm
Hiệu điện thế cả mạch:
Pcm=U^2/Rtđ=> U= \(\sqrt{Pcm\cdot Rtđ}\) = \(\sqrt{3,6\cdot5}\) = 3\(\sqrt{2}\) V
Vì R3 // (R1+R2) nên U=U3=U12= 3\(\sqrt{2}\) V
Cường độ dòng điện mạch nối tiếp:
I12= U12/R12= 3\(\sqrt{2}\) /10= \(\frac{3\sqrt{2}}{10}\) A
Vì R1 nối tiếp R2 nên I12=I1=I2= \(\frac{3\sqrt{2}}{10}\) A
Công suất tiêu thụ của điện trở 2:
P= I^2*R2= \(\frac{3\sqrt{2}}{10}\)^2*8= 1,44 W
MẤY BÀI SAU TƯƠNG TỰ
Rb R U
Điện trở tương đương của mạch là: \(R_{tđ}=R_b+R=R_b+20\left(\Omega\right)\)
Cường độ dòng điện trong mạch chính: \(I=\dfrac{U}{R_{tđ}}=\dfrac{220}{R_b+20}\left(A\right)\)
Công suất của Rb được tính bằng công thức:
\(P_b=I^2.R_b=\dfrac{220^2R_b}{\left(R_b+20\right)^2}=\dfrac{220^2}{R_b+40+\dfrac{400}{R_b}}\)
Để công suất của Rb đạt giá trị lớn nhất thì \(R_b+\dfrac{400}{R_b}\) phải đạt giá trị nhỏ nhất.
Theo bất đẳng thức Cô-si \(R_b+\dfrac{400}{R_b}\) đạt giá trị nhỏ nhất \(\Leftrightarrow R_b=\dfrac{400}{R_b}\Leftrightarrow R_b=200\left(\Omega\right)\)
Vậy để công suất trên bếp điện đạt cực đại thì điện trở của bếp phải bằng 200Ω.
- Bước 1: Mắc mạch điện như hình vẽ
R0 Rb A K2 K1
|
||
- Bước 2: Chỉ đóng khóa K1, số chỉ của ampe kế là I1. Ta có: U = I1(RA + R0) (1)
|
||
- Bước 3: Chỉ đóng K2 và dịch chuyển con chạy để ampe kế chỉ vẫn I1. Khi đó phần biến trở tham gia vào mạch điện có giá trị bằng Rb = R0. |
||
- Bước 4: Giữ nguyên vị trí con chạy của biến trở ở bước 3 rồi đóng cả K1 và K2, số chỉ ampe kế là I2. Ta có: U = I2(RA + R0/2) (2)
|
||
- Giải hệ phương trình (1) và (2) ta tìm được: \(R_A=\dfrac{\left(2I_1-I_2\right)R_0}{2\left(I_2-I_1\right)}\) . |
Ta có : P=I2.R=\(\frac{U^2}{R}\Rightarrow R=\frac{U^2}{P}=\frac{3^2}{3}=3\Omega\)
\(\Rightarrow I^2=\frac{P}{R}=\frac{3}{3}=1\Rightarrow I=\sqrt{1}=1\left(A\right)\)
Vì đèn sáng bình thường mà R1// đèn :
\(\Rightarrow U_1=U_đ=3V\)
Có : \(R_{1+đ}=\frac{R_1.R_đ}{R_1+R_đ}=\frac{6.3}{6+3}=2\Omega\)(vì R1 // đèn)
\(\Rightarrow I_{1+đ}=\frac{U}{R_{1+đ}}=\frac{3}{2}=1,5A\)
\(\Rightarrow I_c=I_{1+đ}=I_2=1,5A\)(vì R1+đ nt R2)
\(\Rightarrow R_{tđ}=\frac{U_{AB}}{I_c}=\frac{12}{1,5}=8\Omega\)
Ta lại có : Rtđ=R1+đ + R2 (vì (R1//đèn )nt R2)
\(\Rightarrow R_2=R_{tđ}-R_{1+đ}=8-2=6\Omega\)
Nhập đề vào đi bạn
rồi bn