trong khai triển của
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017
Câu 1:Hệ số của trong khai triển của
(Nhập kết quả dưới dạng số thập phân gọn nhất).
\(\left(\frac{1}{2}x-3\right)^3\)
\(=\frac{1}{8}x^3-2,25x^2+13,5x-27\)
ĐS: 13,5
Câu 2:Với mọi giá trị của , giá trị của biểu thức bằng
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
= 29
ĐS: 29
Câu 3:Hệ số của trong khai triển của là .
\(\left(2x^2+3y\right)^3\)
\(=8x^6+36x^4y+54x^2y^2+27y^2\)
ĐS: 54
Câu 4:Với , giá trị của biểu thức bằng .
\(x^3-y^3-3xy\times1\)
\(=x^3-y^3-3xy\left(x-y\right)\)
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\)
= 13
= 1
ĐS: 1
Câu 5:Với , giá trị của biểu thức bằng
\(x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
= 32 - 4 . 3 + 1
= - 2
ĐS: - 2
Câu 6:Giá trị nhỏ nhất của biểu thức
\(4x^2+4x+11\)
= 4x2 + 4x + 1 + 11
= (2x + 1)2 + 11 \(\ge\) 11
ĐS: 11
Câu 7:Cho . Khi đó bằng
(x - y)2 = 52
<=> x2 - 2xy + y2 = 25
<=> 2xy = 15 - 25
<=> 2xy = - 10
<=> xy = - 10 : 2
<=> xy = - 5
x3 - y3
= (x - y)(x2 + xy + y2)
= 5 . (15 - 5)
= 50
ĐS: 50
Câu 8:Giá trị lớn nhất của biểu thức
Q = 5 - x2 + 2x - 4y2 - 4y
= 7 - x2 + 2x - 1 - 4y2 - 4y - 1
= 7 - (x - 1)2 - (2y + 1)2 \(\ge\) 7
Câu 9:Giá trị của x thỏa mãn
(x + 3)2 - x2 + 9 = 0
<=> (x + 3)2 - (x - 3)(x + 3) = 0
<=> (x + 3)(x + 3 - x + 3) = 0
<=> 6(x + 3) = 0
<=> x + 3 = 0
<=> x = - 3
ĐS: - 3
Câu 10:Giá trị nhỏ nhất của biểu thức
x2 - 4x + 4y2 + 12y + 13
= x2 - 4x + 4 + 4y2 + 12y + 9
= (x - 2)2 + (2y + 3)2 \(\ge\) 0
21 tháng 2 2017

@Phương An nhanh thế

7 tháng 11 2016

dàigianroi

8 tháng 11 2016

uk

 

2 tháng 3 2017

Câu 7:

Ta có: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A=\left(x-3\right)^2=21\ge21\)

Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)

Vậy \(MIN_A=21\) khi x = 3

Câu 10:

\(A=4x^2+4x+11\\ =\left[\left(2x\right)^2+2.2x.1+1\right]+10\\ =\left(2x+1\right)^2+10\ge10\left(\forall x\in Z\right)\)

Vậy: \(Min_A=10\) khi \(x=-\frac{1}{2}\)

17 tháng 3 2017

1:27

2:5

3:7

4:8000

5:68

6:110

7:13

8:???

9;???

10:4

có câu sai nhan bạn

17 tháng 3 2017

8)-7

20 tháng 10 2016

Câu 1 :

\(\left(2x+3\right)^2\)  = \(4x^2+12x+9\)  

Vậy : 

Biểu thức ?$(2x+3)^2$ khi khai triển có hệ số của hạng tử bậc nhất là 12
Câu 2:
\(\left(3x+1\right)^2\) = \(9x^2\) + \(6+1\)  
Tổng các hệ số của đa thức ?$(3x+1)^2$ khi khai triển là 9 + 6 + 1 = 16
 
 
 
20 tháng 10 2016
Câu 3
 Độ dài đường trung bình của hình thang ?$MNPQ$ là  
\(\frac{MN+PQ}{2}\) = \(\frac{4+6}{2}\) = 5(cm)
 
8 tháng 10 2016

caau1: (2x +3)2 = 4x2 + 12x + 9

hệ số .....là 12

caau2.  hệ số ....là  -36

câu 3. 2x - 5 = 0

 x = 5/2 = 2,5

mk thi lâu rồi 300đ

27 tháng 2 2017

vòng mấy thế

27 tháng 2 2017

Câu 8:

Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{49.51}=\frac{6x-5}{10x+1}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)=\frac{6x-5}{10x+1}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{49}-\frac{1}{51}=\frac{6x-5}{10x+1}.2\)

\(\Rightarrow1-\frac{1}{51}=\frac{12x-10}{10x+1}\)

\(\Rightarrow\frac{50}{51}=\frac{12x-10}{10x+1}\)

\(\Rightarrow612x-510=500x+50\)

\(\Rightarrow112x=660\)

\(\Rightarrow x=5\)

Vậy x = 5

27 tháng 2 2017

Câu 7:

\(x^2+3>0\) nên để B đạt giá trị lớn nhất thì \(x^2+3\) nhỏ nhất

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+3\ge3\)

\(\Rightarrow\frac{9}{x^2+3}\le\frac{9}{3}=3\)

Vậy \(MAX_B=3\) khi x = 0

27 tháng 2 2017

Câu 8:

Giải:
\(B\in Z\Rightarrow2x-3⋮2x+1\)

\(\Rightarrow\left(2x+4\right)-7⋮2x+1\)

\(\Rightarrow2\left(x+2\right)-7⋮2x+1\)

\(\Rightarrow7⋮2x+1\)

\(\Rightarrow2x+1\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{0;-1;3;-4\right\}\)

Vậy \(x\in\left\{-4;-1;0;3\right\}\)

Câu 1:Hình thoi có diện tích và tổng độ dài hai đường chéo là . Cạnh của hình thoi là . Câu 2:Một ô tô phải đi quãng đường AB dài 90km trong một thời gian nhất định. Ô tô đi quãng đường đầu với vận tốc lớn hơn dự định 25km/giờ và đi quãng đường còn lại với vận tốc kém vận tốc ban đầu 20km/giờ. Biết ô tô đến B đúng thời gian đã định. Vậy thời gian ô tô đi quãng...
Đọc tiếp
Câu 1:Hình thoi có diện tích và tổng độ dài hai đường chéo là . Cạnh của hình thoi là .
Câu 2:Một ô tô phải đi quãng đường AB dài 90km trong một thời gian nhất định. Ô tô đi quãng đường đầu với vận tốc lớn hơn dự định 25km/giờ và đi quãng đường còn lại với vận tốc kém vận tốc ban đầu 20km/giờ. Biết ô tô đến B đúng thời gian đã định. Vậy thời gian ô tô đi quãng đường AB là giờ.
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 3:Một đa giác có số đường chéo nhiều hơn số cạnh là 18. Vậy số cạnh của đa giác đó là cạnh.
Câu 4:Cho x,y thỏa mãn đẳng thức: Vậy x + y =
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 5:Cho . Vậy giá trị biểu thức
Câu 6:Giá trị thỏa mãn:
Câu 7:Tập nghiệm của phương trình:{}.
(Nhập kết quả theo thứ tự tăng dần,ngăn cách nhau bởi dấu ";" )
Câu 8:Cho . Vậy giá trị biểu thức
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 9:Cho thỏa mãn điều kiện Vậy giá trị nhỏ nhất của
Câu 10:Giá trị nhỏ nhất của biểu thức
Nộp bài
3
6 tháng 4 2017

Câu 10

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2-6\ge-6\)

Dấu " = " khi \(x^2=0\Rightarrow x=0\)

\(\Rightarrow\left(x^2-6\right)^2\ge36\)

\(\Rightarrow A=\left(x^2-6\right)^2-12\ge24\)

Vậy \(MIN_A=24\) khi x = 0

6 tháng 4 2017

ABCDxyzO

Gọi O là giao điểm của BD và AC

Đặt BO=x,CO=y,BC=z

Vì O là giao điểm hai đường chéo hình thoi

\(\Rightarrow\) BO=\(\dfrac{1}{2}BD\) , CO=\(\dfrac{1}{2}AC\)

Hay x=\(\dfrac{1}{2}BD\) , y=\(\dfrac{1}{2}AC\)

Ta có: SABCD=\(\dfrac{BD.AC}{2}\)=\(\dfrac{2x.2y}{2}\)=2xy

Hay 2xy= 162,24cm2

Ta có BD+AC=36,4cm

hay 2x+2y=36,4cm

\(\Rightarrow\) x+y=\(\dfrac{36,4}{2}=18,2cm\)

\(\Rightarrow\) (x+y)2=18,2.18,2=331,24cm2

\(\Rightarrow\) x2+2xy+y2= 331,24cm2

hay x2+y2+ 162,24cm2=331,24cm2

\(\Rightarrow\) x2+y2= 331,24cm2-162,24cm2=169cm2

Ta có BD\(\perp\)AC (AC,BD là đường chéo của hình thoi ABCD)

\(\Rightarrow\) BO\(\perp\)OC

\(\Rightarrow\) \(\bigtriangleup\)BOC vuông tại O

Áp dụng định lý py-ta-go vào tam giác vuông BOC ta có:

BO2+OC2=BC2

hay x2+y2=BC2

\(\Rightarrow\) BC2=x2+y2=169cm2

\(\Rightarrow\) BC=\(\sqrt{169cm^2}\) =13cm

Mà các cạnh của hình thoi luôn bằng nhau,từ đó suy ra:

Cạnh của hình thoi dài 13cm.

19 tháng 2 2017

Theo bài ra , ta có :

\(2x^2-2xy+y^2+4x+4=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x+4\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(x+4\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x-y=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\x=-4\end{matrix}\right.\)

\(\Rightarrow x=y=-4\)

Thay x = y = -4 vào A ta được

\(A=x^4+y^4\)

\(\Rightarrow A=\left(-4\right)^4+\left(-4\right)^4=2\times\left(-4\right)^4=512\)

Vậy A = 512

Chúc bạn hok tốt =))ok

19 tháng 2 2017

em nhỏ hơn anh một tuổi ák