Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A=> sin B= cosC =\(\frac{3}{4}\)mà lại có:
\(\sin^2B+\cos^2B=1\)
=> \(\cos^2B=1-\sin^2B\)
=> cos B= 1-3/4=1/4
Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác.
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất.
Kết luận: chỉ có 1.
Lời giải:
Dễ thấy \(\Delta>0\) nên theo định lý Viete phương trình luôn có hai nghiệm \(x_1,x_2\) thỏa mãn:
\(\left\{\begin{matrix} x_1+x_2=-p\\ x_1x_2=-228p\end{matrix}\right.\)
Từ đây suy ra hai nghiệm là hai nghiệm nguyên một âm một dương. Giả sử \(x_1 >0,x_2<0\), đặt \(x_1=a>0,-x_2=b>0\).
Ta có \(\left\{\begin{matrix} b-a=p\\ ab=228p\end{matrix}\right.\Rightarrow b(b-a)=bp\Leftrightarrow b^2=bp+228p\vdots p\rightarrow b\vdots p\)
\(\rightarrow bp+228p\vdots p^2\rightarrow b+228\vdots p\)
Mà \(b\vdots p\Rightarrow 228\vdots p\Rightarrow p\in \left\{2,3,19\right\}\)
Thử lại thu được $p=19$ thỏa mãn.
b1 lấy 12612211 x 2
KQ là chữ số của M
tính B kq
B=1870/9