Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì -|x+2| bé hơn hoặc bằng 0
=> -|x+2| - 11 bé hơn hoặc bằng -11
=> A bé hơn hoặc bằng -11
Dấu "=" xảy ra khi |x+2| = 0
=> x+2 = 0=> x= -2
Vậy GTLN của A = -11 khi x = -2.
Ta có: \(-\left|x+2\right|\le0\Rightarrow-\left|x+2\right|-11\le-11\)
=>A có giá trị lớn nhất là -11
Xảy ra khi x=-2
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|\ge\left|x+\frac{5}{2}+\frac{2}{5}-x\right|=\frac{29}{10}>0\)
Suy ra pt vô nghiệm
Do 3x+1 \(⋮\)y và 3y+1\(⋮\) x
nên (3x+1)(3y+1) \(⋮\)xy
=>9xy+3x+3y+1 \(⋮\)xy
mà 9xy \(⋮\)xy
=>3x+3y+1 \(⋮\)xy
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x
Do vai trò của x,y như nhau nên giả sử
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7
=>x = 2,3,4,5,6
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x
Xl bn nha
Chỗ
A B C E F 1 2 1 2 K I
Giải:
Gọi K là giao điểm giữa CF và BE
Kẻ tia phân giác KI của \(\widehat{BKC}\)
\(\Rightarrow\widehat{BKI}=\widehat{CKI}\)
Trong \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow60^o+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=120^o\)
\(\Rightarrow\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=\frac{1}{2}.120^o\)
\(\Rightarrow\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}=60^o\)
\(\Rightarrow\widehat{B_2}+\widehat{C_1}=60^o\)
Xét \(\Delta BKC\) có: \(\widehat{BKC}+\widehat{B_2}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{BKC}+60^o=180^o\)
\(\Rightarrow\widehat{BKC}=120^o\)
Ta có: \(\widehat{B_2}+\widehat{C_1}=\widehat{FKB}\)
\(\Rightarrow\widehat{FKB}=60^o\)
Mà \(\widehat{FKB}=\widehat{EKC}\) ( đối đỉnh )
\(\Rightarrow\widehat{EKC}=60^o\)
Xét \(\Delta FKB,\Delta IKB\) có:
\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)
BK: cạnh chung
\(\widehat{FKB}=\widehat{IKB}\left(=60^o\right)\)
\(\Rightarrow\Delta FKB=\Delta IKB\left(g-c-g\right)\)
\(\Rightarrow BF=BI\) ( cạnh t/ứng )
Xét \(\Delta EKC,\Delta IKC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)
KC: cạnh chung
\(\widehat{EKC}=\widehat{IKC}\left(=60^o\right)\)
\(\Rightarrow EC=IC\) ( cạnh t/ứng )
Có: \(BI+IC=BC\)
\(\Rightarrow BF+CE=BC\)
\(\Rightarrowđpcm\)
Để đa thức này có bậc là 5 thì a=0