Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Vì ΔΔOKA = ΔΔOKC ( c - g - c)
=> góc COK = góc AOK = \(\dfrac{1}{2}\)góc AOC
Vì ΔΔOHA = ΔΔOHB ( c - g - c)
=> góc AOH = góc BOH= \(\dfrac{1}{2}\)góc AOB
Ta có:
góc AOC + góc AOB = góc BOC
=> \(\dfrac{1}{2}\)góc AOC + \(\dfrac{1}{2}\)góc AOB = \(\dfrac{1}{2}\)góc BOC
=> góc AOK + góc AOH = \(\dfrac{1}{2}\)góc BOC
=> góc xOy = \(\dfrac{1}{2}\)góc BOC
hay \(\partial\) = \(\dfrac{1}{2}\)góc BOC
=> góc BOC = 2\(\partial\)
Vậy BOC = 2\(\partial\)
16=1.16=2.8(không đề cập đến trường hợp 4.4 vì các số phân biệt)
225=1.225=3.75=5.45=25.9(không đề cập đến trường hợp 15.15 vì các số phân biệt)
Trường hợp 1.16 bị loại vì 2 cách tách của 225 đều có 1 số <16
Vậy 2 số nhỏ nhất là 2 và 8.Hai số trong phần tách của 225 đều phải>8.Trong các cách trên, cách tách 25.9 thỏa mãn điều kiện náy
2 số lớn nhất là 25 và 9.Tổng của các số viết lên bảng là:2+8+9+25=44
a: \(\widehat{A}=180^0-70^0-36^0=74^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
b: Xét ΔABM vuông tại B và ΔADM vuông tại D có
AM chung
AB=AD
Do đó: ΔABM=ΔADM
c: Ta có: ΔABM=ΔADM
nên MB=MD
hay M nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Ta có: NB=ND
nên N nằm trên đường trung trực của BD(3)
Từ (1), (2) và (3) suy ra A,N,M thẳng hàng