Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)
\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)
\(=\left(2x-y+2\right)^2\)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Phan Thục Trinh - Toán lớp 8 - Học toán với OnlineMath
A là đa thức bậc 4 nên A là bình phương của 1 đa thức bậc 2
Gọi đa thức bậc 2 đó là:\(cx^2+dx+e\)
\(A=\left(cx^2+dx+e\right)^2\)\(=c^2x^4+d^2x^2+e^2+2cdx^3+2cex^2+2dex\)
Đồng nhất hệ số:\(c^2=1;2cd=-6;d^2+ce=a;2de=b;e^2=1\)
Nếu \(c=1\) thì \(d=-3;e=\pm1\)
+,Với \(e=1\) thì \(a=10;b=-6\)
+,Với \(e=-1\) thì \(a=8;b=6\)
Nếu \(c=-1\) tương tự
Lời giải:
$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$
$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$