Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
a) Tớ làm luôn nhé , không chép lại đề đâu
P = \(\left[\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right].\dfrac{x\left(x+6\right)}{2x-6}\)
ĐKXĐ : x # -6 ; x # 6 ; x # 0 ; x # 3 . Khi đó , ta có :
P = \(\left[\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]\).\(\dfrac{x\left(x+6\right)}{2x-6}\)
P = \(\dfrac{x^2-x^2+12x-36}{x-6}.\dfrac{1}{2x-6}\)
P = \(\dfrac{6\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}=\dfrac{6}{x-6}\)
b) Tương tự
Câu 1: D
Câu 2: \(2x-4=0 \Rightarrow x=2\). Chọn B
Câu 3: \(x\ne0; x\ne-2\). Chọn C
Câu 4: \(a=3;b=-1\). Chọn A
Câu 5:
\( ({x^2} + 1)(x - 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {x^2} + 1 > 0\\ x - 2 = 0 \Rightarrow x = 2 \end{array} \right. \)
Chọn B
1 ) \(A=\left(\dfrac{2x^3+2}{x+1}-2x\right)\left(\dfrac{x^3-1}{x-1}+x\right)\)
\(\Leftrightarrow A=\left(\dfrac{2x^3+2-2x^2-2x}{x+1}\right)\left(x^2+2x+1\right)\)
\(\Leftrightarrow A=\left(\dfrac{\left(2x^2-2\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=\left(\dfrac{2\left(x-1\right)\left(x+1\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=2\left(x-1\right)^2\left(x+1\right)^2\ge0\forall x\)
cái này nó hơi khó 1 tí nên chú ý chút khác lên lever :>
a, \(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)ĐK : x khác 0 ; 2 ; -2
\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4x\left(x-2\right)}{MTC}+\frac{2x\left(x+2\right)}{MTC}+\frac{\left(6-5x\right)x}{MTC}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4x^2-8x+2x^2+4x+6x-5x^2}{MTC}\right):\frac{x+1}{x-2}\)
\(=\frac{x^2+2x}{x\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x+1}=\frac{1}{x+1}\)
b, Ta có : \(x^2-2x=8\Leftrightarrow x^2-2x-8=0\)
\(\left(x-4\right)\left(x+2\right)=0\)<=> \(x=4;-2\)
TH1 : Thay x = 4 ta được : \(\frac{1}{4+1}=\frac{1}{5}\)
TH2 : Thay x = -2 ta được : ( ktmđkxđ )
\(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right)\div\frac{x+1}{x-2}\)
a)\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\right)\times\frac{x-2}{x+1}\)
\(=\left(\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)
\(=\left(\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}\times\frac{x-2}{x+1}\)
\(=\frac{1}{x+1}\)
b) x2 - 2x = 8
<=> x2 - 2x - 8 = 0
<=> x2 - 4x + 2x - 8 = 0
<=> x( x - 4 ) + 2( x - 4 ) = 0
<=> ( x - 4 )( x + 2 ) = 0
<=> x = 4 ( tm ) hoặc x = -2 ( ktm )
Với x = 4 ( tm ) => A = 1/5
Với x = -2 ( ktm ) => A không xác định
để pt được xác định thì :
\(x-2\ne0;x^2-1\ne0\)
=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy chọn B