K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

Chọn C.

Đặt  2 log 3 x = t > 0

phương trình trở thành  t 3 - 3 t = m

Bằng cách lập bảng biên thiên của hàm f t = t 3 - 3 t  trên khoảng 0 ; + ∞  chúng ta dễ dàng thấy rằng phương trình có nhiều hơn một nghiệm (chính xác hơn là có hai nghiệm) khi và chỉ khi 

23 tháng 2 2018

9 tháng 8 2017

13 tháng 4 2019

Đáp án C

Phương pháp:

Phương trình bậc nhất đối với sin và cosasinx + bcosx = c vô nghiệm 

Cách giải: Phương trình sinx + (m+1)cosx =  2  vô nghiệm

15 tháng 4 2019

30 tháng 6 2017

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy 

6 tháng 1 2019

27 tháng 9 2019

Đáp án A

Phương pháp: Đặt  t = 4 x

Cách giải:

Đặt  t = 4 x (t>0), khi đó phương trình trở thành:

Với  t = 3 2 => Phương trình vô nghiệm

Với  t ≠ 3 2 (t>0) phương trình trở thành 

Để phương trình ban đầu có nghiệm 

Xét hàm số  ta có:

Lập BBT ta được :

Để phương trình có nghiệm dương thì 

17 tháng 9 2017

Đáp án C

PT ⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0

→ t = x 2 + 2 x m t 3 − 2 t + 2 = 0    1 .

Ta có: f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞

1 ⇔ m = 2 t 2 − 2 t 3 = f t  với t ∈ 3 ; + ∞ .

Ta có: f ' t = − 4 t 3 + 6 t 4 ⇒ f ' t = 0 ⇔ t = 3 2 ⇒ f t

nghịch biến trên 3 ; + ∞ ⇒ f 3 ; + ∞ t ≤ f 3 = − 2 27

Suy ra m ≤ − 2 27 ⇒ Có vô số giá trị của m.

20 tháng 2 2019

Đáp án D

Ta có:  4 x − m .2 x + 1 + 2 m = 0 ⇔ 2 x 2 − 2 m .2 x + 2 m = 0

Giả thiết ⇔ Δ ' = m 2 − 2 m > 0 S = 2 m > 0 P = 2 m > 0 ⇔ m > 2

Khi đó:  2 x 1 + 2 x 2 = 2 m 2 x 1 .2 x 2 = 2 m ⇔ 2 x 1 + x 2 = 2 m ⇔ m = 4