K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Đáp án A

Đặt y = f(x) = 2 |x − 1| + 3 |x| − 2

Ta có: f(2) = 2 |2 − 1| + 3 |2| − 2 = 6 nên (2; 6) thuộc đồ thị hàm số.

a: \(f\left(-2\right)=\left(-2\right)^2+3\cdot\left(-2\right)-1\)

=4-6-1

=-3

\(f\left(-1\right)=\left(-1\right)^2+3\cdot\left(-1\right)-1\)

\(=1-3-1\)

=-3

7 tháng 10 2021

giúp em mng ơii

 

28 tháng 8 2021

Đáp án :

A. ( -2; -10 )

HT

- A nhé

-H-T---

24 tháng 11 2016

lop 7 nhé

29 tháng 11 2016

C

 

Chọn D

15 tháng 1 2022

d

5 tháng 2 2019

Đáp án: A (Thay trực tiếp).

1: Phương trình hoành độ giao điểm là

\(x^2-2x-1=x-1\)

=>x(x-3)=0

=>x=0 hoặc x=3

Khi x=0 thì y=-1

Khi x=3 thì y=2

2: Phương trình hoành độ giao điểm là:

\(-x+3=-x^2-4x+1\)

\(\Leftrightarrow x^2+3x+2=0\)

=>x=-1 hoặc x=-2

Khi x=-1 thì y=1+3=4

Khi x=-2 thì y=2+3=5

3: Phương trình hoành độ giao điểm là:

\(x^2-4x+4=2x-5\)

\(\Leftrightarrow x=3\)

=>y=1

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)