Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+........+\dfrac{x}{78}=\dfrac{220}{39}\)
\(\Leftrightarrow\dfrac{2x}{12}+\dfrac{2x}{20}+........+\dfrac{2x}{156}=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+..........+\dfrac{1}{12.13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3}-\dfrac{1}{13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x.\dfrac{10}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x.\dfrac{20}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x=11\)
Vậy ...
Gọi biểu thức là A
\(A=\dfrac{2x}{12}+\dfrac{2x}{20}+\dfrac{2x}{30}+....+\dfrac{2x}{156}=\dfrac{200}{39}\)
Ta có công thức :
\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Áp dụng công thức trên, ta có :
\(A=\dfrac{2x}{3.4}+\dfrac{2x}{4.5}+\dfrac{2x}{5.6}+....+\dfrac{2x}{12.13}\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{12}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{10}{39}\right)=\dfrac{200}{39}\)
\(A=2x=\dfrac{200}{39}:\dfrac{10}{39}\)
\(2x=20\)
\(\Rightarrow x=10\)
mink nghĩ vậy bạn ạ
Mấy bài này bạn tự làm đi, chuyển vế tìm x gần giống cấp I mà.
b)\(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
=>\(\dfrac{-3}{5}.x=1\)
=>\(x=1:\dfrac{-3}{5}\)
=>\(x=\dfrac{-5}{3}\)
Vậy \(x=\dfrac{-5}{3}\)
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
Câu 2:
\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)
\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)
=>x=11
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
a) \(\dfrac{7}{13}\)\(\times\)\(\dfrac{7}{15}\)-\(\dfrac{5}{12}\)\(\times\)\(\dfrac{21}{39}+\dfrac{49}{91}\)\(\times\)\(\dfrac{8}{15}\)
= \(\dfrac{7}{13}\)\(\times\)\(\dfrac{7}{15}\)-\(\dfrac{5}{12}\times\dfrac{7}{13}+\dfrac{7}{13}\times\dfrac{8}{15}\)
= \(\dfrac{7}{13}\left(\dfrac{7}{15}-\dfrac{5}{12}+\dfrac{8}{15}\right)\)
= \(\dfrac{7}{13}\times\dfrac{7}{12}\)
= \(\dfrac{49}{156}\)
b) \(\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
= \(\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\times0\)
= 0
a, sai đề
b, \(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Rightarrow\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{9}\) ( nhân cả 2 vế với \(\dfrac{1}{2}\) )
\(\Rightarrow\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\Rightarrow x+1=18\Rightarrow x=17\)
Vậy x = 17
Câu a thiếu đề rồi bạn ơi mik giải câu b đây:
\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(2\left(\dfrac{1}{6}-\dfrac{1}{x+2}\right)=\dfrac{2}{9}\)
\(\dfrac{1}{6}-\dfrac{1}{x+2}=\dfrac{2}{9}:2\)
\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Rightarrow x+1=18\Rightarrow x=17\)
Vậy x = 17
\(x.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)
\(x.\dfrac{20}{39}=\dfrac{220}{39}\)
\(x=\dfrac{220}{39}:\dfrac{20}{39}\)
x\(=11\)
x6+x10+x15+........+x78=22039x6+x10+x15+........+x78=22039
⇔2x12+2x20+........+2x156=22039⇔2x12+2x20+........+2x156=22039
⇔2x(13.4+14.5+..........+112.13)=22039