Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)
b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)
c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)
d)\(x^2=7vớix< 0\)
\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)
e)\(x^2-4=0với>0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)
f)\(\left(2x+7\sqrt{7}\right)^2=7\)
\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)
\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)
\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)
\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}=3\)
\(\Rightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)=0\)
\(\Rightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}+\dfrac{x-2017}{2014}=0\)
\(\Rightarrow\left(x-2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}\ne0\) nên \(x-2017=0\Leftrightarrow x=2017\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3
suy ra k=3
taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)
=>k+1=4
=>k=3
1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)
Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Kết luận ...
Lời giải:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk, c=dk \)
Khi đó:
\(\frac{2002a+2003b}{2002a-2003b}=\frac{2002bk+2003b}{2002bk-2003b}=\frac{b(2002k+2003)}{b(2002k-2003)}=\frac{2002k+2003}{2002k-2003}(1)\)
\(\frac{2002c+2003d}{2002c-2003d}=\frac{2002dk+2002d}{2002dk-2003d}=\frac{d(2002k+2003)}{d(2002k-2003)}=\frac{2002k+2003}{2002k-2003}(2)\)
Từ \((1);(2)\Rightarrow \frac{2002a+2003b}{2002a-2003b}=\frac{2002c+2003d}{2002c-2003d}\)
Ta có đpcm.
Xét tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Gọi giá trị chung của các tỉ số đó là k, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=> \(a=k.b,c=k.d\)
Ta có :
( 1 )
= \(\dfrac{2002a+2003b}{2002a-2003b}=\dfrac{2002kb+2003b}{2002kb-2003b}\)
= \(\dfrac{b.\left(2002k+2003\right)}{b.\left(2002k-2003\right)}=\dfrac{2002k+2003}{2002k-2003}\)
( 2 ) \(\dfrac{2002c+2003d}{2002c-2003d}=\dfrac{2002kd+2003d}{2002kd-2003d}\)
= \(\dfrac{d.\left(2002k+2003\right)}{d.\left(2002k-2003\right)}=\dfrac{2002k+2003}{2002k-2003}\)
Từ ( 1 ) và ( 2 ) => \(\dfrac{2002a+2003b}{2002a-2003b}=\dfrac{2002c+2003d}{2002c-2003d}\)
\(=\left(\dfrac{3}{2}\cdot\dfrac{2}{5}+2\cdot\dfrac{1}{5}\right):\dfrac{3}{8}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\cdot\dfrac{8}{3}=\dfrac{8}{3}\)