Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P=\(\dfrac{3x-3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)-\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)-\(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{3x-3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
Vậy...
b, x=\(3+2\sqrt{2}\)=\(2+2\sqrt{2}+1\)=\(\left(\sqrt{2}+1\right)^2\)
Thay x vào P ta có:
\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}+2}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1+2}\)=\(\dfrac{-5+4\sqrt{2}}{7}\)
Vậy...
a: \(P=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\right)-\dfrac{5x}{x^2-1}\)
\(=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{4\sqrt{x}}{x-1}\right)-\dfrac{5x}{x^2-1}\)
\(=\sqrt{x}\left(\dfrac{\sqrt{x}+4\sqrt{x}\left(x+1\right)}{\left(x^2-1\right)}\right)-\dfrac{5x}{x^2-1}\)
\(=\dfrac{x+4x\left(x+1\right)}{x^2-1}-\dfrac{5x}{x^2-1}\)
\(=\dfrac{x+4x^2+4x-5x}{x^2-1}\)
\(=\dfrac{4x^2}{x^2-1}\)
Khi x=4 thì \(P=\dfrac{4\cdot16}{16-1}=\dfrac{64}{15}\)
b: Để P/Q=0 thì P=0
=>x=0
Bài 1:
a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)
Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
a,\(P=\dfrac{\sqrt{x}-1-2}{\sqrt{x}-1}=1-\dfrac{2}{\sqrt{x-1}}\)
P<\(\dfrac{1}{2}\)\(\Leftrightarrow1-\dfrac{2}{\sqrt{x}-1}< \dfrac{1}{2}
\)
\(\Leftrightarrow\dfrac{1}{2}< \dfrac{2}{\sqrt{x}-1}\)\(\Leftrightarrow\dfrac{2}{4}< \dfrac{2}{\sqrt{x}-1}\)
\(\Rightarrow4>\sqrt{x}-1
\Leftrightarrow5>\sqrt{x}\)
\(\Leftrightarrow25>x\)
b, x=\(\sqrt{4+2.2.\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)
= \(\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
= \(|2+\sqrt{3}|+|2-\sqrt{3}|\)
= \(2+\sqrt{3}+2-\sqrt{3}=4\)
suy ra P=\(\dfrac{\sqrt{4}-3}{\sqrt{4}-1}=\dfrac{-1}{1}=-1\)
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
\(ĐKXĐ:x\ne\pm1\)
\(a.D=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{2}{x^2-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)=\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\dfrac{2-x\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)\left(x-1\right)}{1-x^2}=\dfrac{4x}{1-x^2}\)\(b.x=\sqrt{3+\sqrt{8}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{2}+1\left(TM\right)\)
Khi đó : \(D=\dfrac{4\left(\sqrt{2}+1\right)}{1-3-2\sqrt{2}}=\dfrac{4\left(\sqrt{2}+1\right)}{-2\left(1+\sqrt{2}\right)}=-2\)
\(c.D=\dfrac{8}{3}\Leftrightarrow\dfrac{4x}{1-x^2}=\dfrac{8}{3}\)
\(\Leftrightarrow\dfrac{12x-8\left(1-x^2\right)}{3\left(1-x^2\right)}=0\)
\(\Leftrightarrow8x^2+12x-8=0\)
\(\Leftrightarrow2x^2-x+4x-2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
KL.........
a) Điều kiện cần có: \(\left\{{}\begin{matrix}x>0\\\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\ne0\end{matrix}\right.\)
Ta có:\(\left\{{}\begin{matrix}\sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}
=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\end{matrix}\right.\)Từ đó thế vào bài cho ta:
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b) Ta có: \(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4-2\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}+1}{2}\)
Đưa vào bài, ta có: \(P=\left(\sqrt{3}-1+1\right)^2.\dfrac{\sqrt{3}+1}{2}=\dfrac{3\sqrt{3}+3}{2}\)
x≠1 hay x≠−1, một trong 2 cái thoi bạn
2 cái luôn nhe bạn :))