Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B= \(\dfrac{2011}{1}+\dfrac{2010}{2}+.......+\dfrac{1}{2011}\)
Cộng 1 vào ta được:
B=(\(\dfrac{2012}{1}+\dfrac{2012}{2}+.......+\dfrac{2012}{2011}\)+\(\dfrac{2012}{2012}\)) -2012
-> B= 2012 (\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2011}\)+\(\dfrac{1}{2012}\)) -2012+\(\dfrac{2012}{1}\)
Thay vào P ta được:
P=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)}\)
-> P= \(\dfrac{1}{2012}\)
có chỗ nào chưa hiểu hỏi mình nha!
Bước 1: bạn cộng 1 vào từng hạng tử của mẫu:
\(\dfrac{2011}{1}+1\); \(\dfrac{2012}{2}+1\);....
Bước 2: Tính ra ta được:
\(\dfrac{2011}{1}+1\)=\(\dfrac{2012}{1}\); ....
Vì cộng một vào từng hạng tử và cộng thêm một vào cuối biểu thức (2012 hạng tử) nên phải từ đi 2012 để vẫn giữ nguyên giá trị biểu thức.
Bước 3: thấy trong ngoặc chung 2012 nên lấy 2012 ra và chuyển \(\dfrac{2012}{1}\)ra cuối cùng nên ta được biểu thức trên. Tính và được kết quả cuối cùng.
bước 4: thay vào P ta được: P=\(\dfrac{1}{2012}\)
vì giải thích trên máy nên hơi khó hiểu, bạn chịu khó nha~
Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)
\(D=\dfrac{1}{5}-\dfrac{2}{3}\)
\(D=-\dfrac{7}{15}\)
Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}\)
=>3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}\)
=>3B-B=2B=1-\(\dfrac{1}{3^{2012}}\)
=>B=\(\dfrac{1}{2}-\dfrac{1}{2.3^{20112}}\)<1/2
vậy........
\(D=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)
Ta có mẫu của phân số trên là :
\(\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}\)
\(=\left(\dfrac{2010}{2}+1\right)+\left(\dfrac{2009}{3}+1\right)+...+\left(\dfrac{1}{2011}+1\right)+1\)
=\(\dfrac{2012}{2}+\dfrac{2012}{3}+\dfrac{2012}{4}+...+\dfrac{2012}{2011}+\dfrac{2012}{2012}\)
=\(2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)\)
Từ đó suy ra :
\(D=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)}=\dfrac{1}{2012}\)
Vậy \(D=\dfrac{1}{2012}\)
Nhớ tịk cho mink nhé
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)}\)
\(=\frac{1}{2014}\)
Vậy \(A=\frac{1}{2014}\)
Đặt B=\(2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}\)
=>B=\(\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{1}{2013}\right)\)
=\(\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}\)
=\(2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)\)
=>A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2013}}{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)}=\dfrac{1}{2014}\)
Vậy ...
Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)
Vậy \(\left(P-S\right)^{2013}=0\)
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}\)
\(\Rightarrow\dfrac{1}{3}A=\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}+\dfrac{1}{3^{2013}}\)
\(\Rightarrow A-\dfrac{1}{3}A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...-\dfrac{1}{3^{2012}}-\dfrac{1}{3^{2013}}\)\(\Rightarrow\dfrac{2}{3}A=\dfrac{1}{3}-\dfrac{1}{3^{2013}}< \dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}A< \dfrac{1}{3}\)
\(\Rightarrow A< \dfrac{1}{3}.\dfrac{3}{2}=\dfrac{1}{2}\)
Vậy \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}< \dfrac{1}{2}\)
a) \(\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=\sqrt{16}\) \(\Rightarrow\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=4\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}-\dfrac{1}{3}=-2\\\dfrac{x}{2}-\dfrac{1}{3}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=\dfrac{-5}{3}\\\dfrac{x}{2}=\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{14}{3}\end{matrix}\right.\)
Vậy \(x=\dfrac{-10}{3}\) hoặc \(x=\dfrac{14}{3}\) thì thỏa mãn đề bài.
b) \(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\) \(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\) \(\Rightarrow\dfrac{x+4+2010}{2010}+\dfrac{x+3+2011}{2011}=\dfrac{x+2+2012}{2012}+\dfrac{x+1+2013}{2013}\) \(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\) \(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\) \(\Rightarrow\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\) \(\Rightarrow x+2014=0\) \(\Rightarrow x=-2014\)
Vậy \(x=-2014\) thì thỏa mãn đề bài.
c) \(3^{x+2}+4\times3^{x+1}=7\times3^6\) \(\Rightarrow3^{x+1+1}+4\times3^{x+1}=7\times3^6\) \(\Rightarrow3^{x+1}\times3+4\times3^{x+1}=7\times3^6\) \(\Rightarrow\left(3+4\right)\times3^{x+1}=7\times3^6\) \(\Rightarrow3^{x+1}=3^6\) \(\Rightarrow x+1=6\) \(\Rightarrow x=5\)
Vậy \(x=5\) thì thỏa mãn đề bài.
a)
\(\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=\sqrt{16}\\ \Rightarrow\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=4\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{1}{3}=2\\\dfrac{x}{2}-\dfrac{1}{3}=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{1}{3}+2\\\dfrac{x}{2}=\dfrac{1}{3}-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{7}{3}\\\dfrac{x}{2}=\dfrac{-5}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{3}.2\\x=\dfrac{-5}{3}.2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{3}\\x=\dfrac{-10}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Rightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
\(\Rightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)
mà \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)
=> x + 2014 = 0
=> x = -2014
vậy x = -2014
c)\(3^{x+2}+4.3^{x+1}=7.3^6\)
\(\Rightarrow3^{x+1}.3+4.3^{x+1}=7.3^6\\ \Rightarrow3^{x+1}\left(3+4\right)=7.3^6\\ \Rightarrow3^{x+1}.7=7.3^6\\ \Rightarrow3^{x+1}=3^6\\ \Rightarrow x+1=6\\ x=6-1\\ x=5\)
vậy x = 5
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\left(\dfrac{2010}{2}+1\right)+\left(\dfrac{2009}{3}+1\right)+...+\left(\dfrac{1}{2011}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}+\dfrac{2012}{2012}}=\dfrac{1}{2012}\)