K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}-2}=\sqrt{a}-2\)

\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\sqrt{a}-2\)

a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)

b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)

\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)

=>A<1

c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)

=>A>=0 với mọi x thỏa mãn  ĐKXĐ

mà A<1

nên 0<=A<1

=>Để A nguyên thì A=0

=>x=0

Sửa đề: x-4

\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)

14 tháng 7 2021

a) \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\)

\(=\sqrt{a}+2+\sqrt{a}+2=2\sqrt{a}+4\)

b) \(P=a+1\Rightarrow2\sqrt{a}+4=a+1\Rightarrow a-2\sqrt{a}-3=0\)

\(\Rightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)=0\) mà \(\sqrt{a}+1>0\Rightarrow\sqrt{a}=3\Rightarrow a=9\)

a: \(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}\)

\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b: Để A=2 thì \(3\sqrt{x}=2\sqrt{x}+4\)

hay x=16

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

14 tháng 8 2023

\(a,A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\left(dk:x\ge0,x\ne4\right)\\ =\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right)\\ =\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x-4+10-x}\)

\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\sqrt{x}-2}.\dfrac{1}{6}\\ =\dfrac{-6}{\left(\sqrt{x}-2\right).6}\\ =-\dfrac{1}{\sqrt{x}-2}\)
\(b,A>0\Leftrightarrow-\dfrac{1}{\sqrt{x}-2}>0\Leftrightarrow\sqrt{x}-2< 0\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0,x\ne4\), ta kết luận \(0\le x< 4\)

 

14 tháng 8 2023

Mình cần gấp nhớ đừng làm tắt nhé 

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)