Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^2\cdot11}=\dfrac{2^3\cdot5\cdot10\cdot7}{2^3\cdot5\cdot7\cdot77}=\dfrac{10}{77}\)
\(\dfrac{2^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot2^4\cdot5^3\cdot14}=\dfrac{2^3\cdot3\cdot5^3\cdot7\cdot3^2\cdot8}{3\cdot2^3\cdot2\cdot5^3\cdot14}=\dfrac{7\cdot3^2\cdot8}{2\cdot14}=\dfrac{63\cdot8}{2\cdot14}=18=\dfrac{1386}{77}\)
Trả lời
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)
=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(2.\dfrac{100}{101}\)
=\(\dfrac{200}{101}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\)
= \(2.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\right)\)
= \(1.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2019.2021}\right)\)
= \(1.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\right)\)
= \(1.\left(1-\dfrac{1}{2021}\right)\)
= \(1.\dfrac{2020}{2021}\)
= \(\dfrac{2020}{2021}\)
a: -8/31=-808/3131
-786/3131=-786/3131
b: \(\dfrac{11}{2^3\cdot3^4\cdot5^2}=\dfrac{11\cdot5}{2^3\cdot3^4\cdot5^3}=\dfrac{55}{2^3\cdot3^4\cdot5^3}\)
\(\dfrac{29}{2^2\cdot3^4\cdot5^3}=\dfrac{29\cdot2}{2^3\cdot3^4\cdot5^3}=\dfrac{58}{2^3\cdot3^4\cdot5^3}\)
c: 7/39=140/780
11/65=132/780
9/52=135/780
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
`(4^2. 5.11)/(44.20)`
`=(4.11.4.5)/(4.11.4.5)`
`=1`
`(13.15.16)/(18.65.7)`
`=(13.15.16)/(2.3.3.13.5.7)`
`=8/21`
`(7.2.8.5^2)/(14.2.5)`
`=(14.2.4.5.5)/(14.2.5)`
`=4.5`
`=20`
`(2^3. 3^3. 5)/(3.2^3. 5^3)`
`=(2^3. 3.5.3^2)/(2^3. 3.5.5^2)`
`=(3^2)/(5^2)`
`=9/25`
**Quy đồng:
`(4^2. 5.11)/(44.20)=1=525/525`
`(13.15.16)/(18.65.7)=8/21=200/525`
`(7.2.8.5^2)/(14.2.5)=20=840/525`
`(2^3. 3^3. 5)/(3.2^3. 5^3)=9/25=189/525`