K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

\(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{9}{\left(x-3\right)\left(x+6\right)}=\dfrac{4}{3}\)

=> \(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{1}{x-3}-\dfrac{1}{x+6}=\dfrac{4}{3}\)

=> \(\dfrac{1}{x+1}-\dfrac{1}{x+6}-\dfrac{1}{x-3}+\dfrac{1}{x+6}=0\)

=> \(\dfrac{1}{x+1}-\dfrac{1}{x-3}=0\)

Ma \(\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)

=> pt vo nghiem

21 tháng 2 2018

\(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}-\dfrac{1}{x+3}+\dfrac{1}{x+6}=\dfrac{4}{3}\)

=> \(\dfrac{1}{x+1}-\dfrac{1}{x+3}=\dfrac{4}{3}\)

=> \(\dfrac{2}{\left(x+1\right)\left(x+3\right)}=\dfrac{4}{3}\)

=> 4(x+1)(x+3)=6

=> 4(x2+4x+3)=6

=> 4x2+16x+6=0

=> (4x2+16x+16)-10=0

=> (2x+4)2=10

=> \(\left[{}\begin{matrix}2x+4=\sqrt{10}\\2x+4=-\sqrt{10}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-4}{2}\\x=\dfrac{-\sqrt{10}-4}{2}\end{matrix}\right.\)

11 tháng 5 2018

\(\text{a) }\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\\ ĐKXĐ:x\ne-1;x\ne-3;x\ne-4;x\ne-6\\ \Rightarrow\dfrac{3}{x^2+4x+x+4}+\dfrac{2}{x^2+6x+4x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+6x-3x-18}\\ \Rightarrow\dfrac{3}{x\left(x+4\right)+\left(x+4\right)}+\dfrac{2}{x\left(x+6\right)+4\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{x\left(x+6\right)-3\left(x+6\right)}\\ \Rightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x-3\right)\left(x+6\right)}\)\(\Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\\ \Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x+6}-\dfrac{1}{x-3}+\dfrac{1}{x+6}=\dfrac{4}{3}\\ \Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\\ \Rightarrow\dfrac{3\left(x-3\right)}{3\left(x+1\right)\left(x-3\right)}-\dfrac{3\left(x+1\right)}{3\left(x+1\right)\left(x-3\right)}=\dfrac{4\left(x+1\right)\left(x-3\right)}{3\left(x+1\right)\left(x-3\right)}\\ \Rightarrow3x-9-3x-3=4\left(x^2-2x-3\right)\\ \Leftrightarrow4x^2-8x-12=-12\\ \Leftrightarrow4x^2-8x=0\\ \Leftrightarrow4x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)Vậy phương trình có tập nghiệm \(S=\left\{0;2\right\}\)

2) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x-4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)

\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)

\(\Leftrightarrow-24x+144=-5x+30\)

\(\Leftrightarrow-24x+144+5x-30=0\)

\(\Leftrightarrow-19x+114=0\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: x=6

3) Ta có: \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)

\(\Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9-60-32x=0\)

\(\Leftrightarrow-2x-51=0\)

\(\Leftrightarrow-2x=51\)

hay \(x=-\dfrac{51}{2}\)

Vậy: \(x=-\dfrac{51}{2}\)

4) Ta có: \(\dfrac{x+1}{3}-\dfrac{x-2}{6}=\dfrac{2x-1}{2}\)

\(\Leftrightarrow\dfrac{2\left(x+1\right)}{6}-\dfrac{x-2}{6}=\dfrac{3\left(2x-1\right)}{6}\)

\(\Leftrightarrow2x+2-x+2=6x-3\)

\(\Leftrightarrow x+4-6x+3=0\)

\(\Leftrightarrow-5x+7=0\)

\(\Leftrightarrow-5x=-7\)

hay \(x=\dfrac{7}{5}\)

Vậy: \(x=\dfrac{7}{5}\)

21 tháng 1 2021

1) \(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)

\(2\left(5x-2\right)=3\left(5-3x\right)\)

\(10x-4=15-9x\)

\(10x+9x=15+4\)

\(19x=19\)

\(x=1\)

Vậy \(x=1\)

f: =>\(\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

=>28-6(x+2)=-9-5(x-4)

=>28-6x-12=-9-5x+20

=>-6x+16=-5x+11

=>-x=-5

=>x=5

loading...

11 tháng 3 2023

những bài chứa ẩn ở mẫu thì phải có đkxđ chứ bạn

d: =>\(\dfrac{12x+1}{11x-4}=\dfrac{20x+17-20x+8}{18}=\dfrac{25}{18}\)

=>25(11x-4)=18(12x+1)

=>275x-100=216x+18

=>59x=118

=>x=2

f: =>\(\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

=>28-6(x+2)=-9-5(x-4)

=>28-6x-12=-9-5x+20

=>-6x+16=-5x+11

=>-x=-5

=>x=5

loading...

1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)

\(\Leftrightarrow2x-8+12x=4x-2\)

\(\Leftrightarrow10x=6\)

hay \(x=\dfrac{3}{5}\)

2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)

\(\Leftrightarrow15x-6-30=10-20x\)

\(\Leftrightarrow35x=46\)

hay \(x=\dfrac{46}{35}\)

3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)

\(\Leftrightarrow3x-6-4=6x-6\)

\(\Leftrightarrow-3x=4\)

hay \(x=-\dfrac{4}{3}\)

11 tháng 8 2021

1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)

\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)

\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(3x+9+4x-12=3x-7\)

\(\Leftrightarrow4x=-7+12-9=-4\)

hay \(x=-1\left(nhận\right)\)

2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(3x+12-4x+16=3x-4\)

\(\Leftrightarrow28-4x=-4\)

\(\Leftrightarrow4x=32\)

hay \(x=8\left(tm\right)\)

3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

Suy ra: \(5x^2-12+3x+3=5x^2-5x\)

\(\Leftrightarrow3x-9+5x=0\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(nhận\right)\)

1: Ta có: \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow5x+1-2\left(x-2\right)=4\)

\(\Leftrightarrow5x+1-2x+4=4\)

\(\Leftrightarrow3x=-1\)

hay \(x=-\dfrac{1}{3}\)

2: Ta có: \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)

\(\Leftrightarrow9x+27+12-36x=-2x+2\)

\(\Leftrightarrow-27x+2x=2-39\)

hay \(x=\dfrac{37}{25}\)

3: Ta có: \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)

\(\Leftrightarrow3x+6-10x=4-4x\)

\(\Leftrightarrow-7x+4x=4-6=-2\)

hay \(x=\dfrac{2}{3}\)

4: Ta có: \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)

\(\Leftrightarrow5x-15-x-1=2x-4\)

\(\Leftrightarrow4x-2x=-4+16=12\)

hay x=6

5: Ta có: \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)

\(\Leftrightarrow12x+3-9x+5+4x-8=0\)

\(\Leftrightarrow7x=0\)

hay x=0

a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)

\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)

\(\Leftrightarrow2x-x^2+3=3\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)

b)\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,yEN*=>x-y-1<x+y+3

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy ...