K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}\Rightarrow y=\dfrac{4}{3}.\dfrac{2x}{3}=\dfrac{8x}{9}\)
\(\dfrac{2x}{3}=\dfrac{4z}{5}\Rightarrow z=\dfrac{5}{4}.\dfrac{2x}{3}=\dfrac{10x}{12}=\dfrac{5x}{6}\)
\(\Rightarrow x+y+z=x+\dfrac{8x}{9}+\dfrac{5x}{6}=49\)
Hay \(\left(18+16+15\right).\dfrac{x}{18}=49\).

tức là $x = 18 $
\(\Rightarrow y=16\)
\(z=15\)

17 tháng 10 2017

Theo đề bài ta có :

X/3 =y/4 => x/15 = y/20

Y/5 = z/7 => y/20 = z/28

=> x/15 = y/20 = z/28

Và 2x/30 =3y/60 =z/28 biết 2x + 3y - z = 124

Áp dụng tích chất dãy tỉ số bằng nhau ta có :

2x/30 = 3y/60 = z/28 = (2x+3y - z )/ 30 +60 - 28 = 124/62 = 2

* 2x/30 = 2 => 2x = 60 => x = 30

* 3y/60 = 2 => 3y = 120 => y = 40

* z/28 = 2 => z = 56

17 tháng 10 2021

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\\ \Rightarrow\left\{{}\begin{matrix}x=12\cdot\dfrac{3}{2}=18\\y=12\cdot\dfrac{4}{3}=16\\z=12\cdot\dfrac{5}{4}=15\end{matrix}\right.\)

2 tháng 7 2018

a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)

=> x=8

3y=18=>y=6

4z=72=>z=18

Vậy x=8 ; y=6 ; z=18

2 tháng 7 2018

b, Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)

Câu c bạn làm tương tự nhé!

d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)

Vậy...

22 tháng 1 2018

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)\(x+y+z=49\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=12\Rightarrow x=12.\dfrac{3}{2}=18\)
\(\Rightarrow\dfrac{y}{\dfrac{4}{3}}=12\Rightarrow y=12.\dfrac{4}{3}=16\)
\(\Rightarrow\dfrac{z}{\dfrac{5}{4}}=12\Rightarrow z=12.\dfrac{5}{4}=15\)
Vậy \(\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

21 tháng 10 2017

a) Ta có:

\(x+y+z=49\Rightarrow12x+12y+12z=588\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{588}{49}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.3:2\\y=12.4:3\\z=12.5:4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

2 tháng 9 2017

Theo đề bài, ta có:
\(\dfrac{2x}{3}\)=\(\dfrac{3y}{4}\)=\(\dfrac{4z}{5}\)=\(\dfrac{x}{\dfrac{3}{2}}\)=\(\dfrac{y}{\dfrac{4}{3}}\)=\(\dfrac{z}{\dfrac{5}{4}}\)\(x+y+z=49\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2x}{3}\)=\(\dfrac{3y}{4}\)=\(\dfrac{4z}{5}\)=\(\dfrac{x}{\dfrac{3}{2}}\)=\(\dfrac{y}{\dfrac{4}{3}}\)=\(\dfrac{z}{\dfrac{5}{4}}\)=\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)=\(\dfrac{49}{\dfrac{18}{12}+\dfrac{16}{12}+\dfrac{15}{12}}\)=\(\dfrac{49}{\dfrac{49}{12}}\)=12
Suy ra: x=12.\(\dfrac{3}{2}\)=18
y=12.\(\dfrac{4}{3}\)=16
z=12.\(\dfrac{5}{4}\)=15
Vậy x=18; y=16; z=15

17 tháng 11 2017

Ta có :\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{2x}{3.12}=\dfrac{3y}{4.12}=\dfrac{4z}{5.12}\)

\(=\dfrac{2x}{36}=\dfrac{3y}{48}=\dfrac{4z}{60}=\dfrac{x}{18}=\dfrac{y}{16}=\dfrac{z}{15}\)và x+y+z=49

\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{16}=\dfrac{z}{15}=\dfrac{x+y+z}{18+16+15}=\dfrac{49}{49}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{18}=1\\\dfrac{y}{16}=1\\\dfrac{z}{15}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

Vậy x=18;y=16;z=15

27 tháng 9 2017

Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12.\left(x+y+z\right)}{49}\)

\(=\dfrac{12.49}{49}=12\)

\(\Rightarrow\dfrac{2x}{3}=12\Rightarrow x=18\)

\(\dfrac{3y}{4}=12\Rightarrow y=16\)

\(\dfrac{4z}{5}=12\Rightarrow z=15\)

Vậy \(x=18;y=16;z=15\)

19 tháng 11 2017

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\dfrac{x}{\dfrac{3}{2}}=12\Rightarrow x=12.\dfrac{3}{2}=18\)

\(\dfrac{y}{\dfrac{4}{3}}=12\Rightarrow y=12.\dfrac{4}{3}=16\)

\(\dfrac{y}{\dfrac{5}{4}}=12\Rightarrow y=12.\dfrac{5}{4}=15\)

Vậy x;y;z lần lượt là 18;16;15

8 tháng 10 2017

a,3x=2y;7y=5z

=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta co:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)

Các câu sau tương tự

10 tháng 10 2017

b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6

Từ đề bài ta có:

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)

từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3

\(\Rightarrow\)x=3.9=27

y=3.12=36

z=3.20=60

Vậy.....

chúc bạn học tốt,nhớ tick cho mình nhaleuleu

2 tháng 9 2017

Bài 1 :

Đặt :

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=3k\\3y=4k\\4z=5k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3k}{2}\\y=\dfrac{4k}{3}\\z=\dfrac{5k}{4}\end{matrix}\right.\)

Thay vào \(x+y+z=49\) ta được :

\(\dfrac{3k}{2}=\dfrac{4k}{3}=\dfrac{5k}{4}=49\)

\(\Leftrightarrow\dfrac{18k+16k+15k}{12}=\dfrac{588}{12}\)

\(\Leftrightarrow49k=588\)

\(\Leftrightarrow k=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3.12}{2}=18\\y=\dfrac{4.12}{3}=16\\z=\dfrac{5.12}{4}=15\end{matrix}\right.\)

Vậy ....

Bài1:

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{90}=\dfrac{y}{80}=\dfrac{z}{75}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{90}=\dfrac{y}{80}=\dfrac{z}{75}=\dfrac{x+y+z}{90+80+75}=\dfrac{49}{245}=\dfrac{1}{5}\)

=>x=18;b=16;c=15

Vậy...