Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7)\(\dfrac{-19}{34}\left(\dfrac{17}{19}+\dfrac{49}{18}\right)+\dfrac{49}{18}\left(\dfrac{19}{34}-\dfrac{18}{7}\right)\)
=\(\dfrac{-19}{34}.\dfrac{17}{19}+\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}-\dfrac{18}{7}.\dfrac{49}{18}\)
=\(\dfrac{1}{2}+\left(\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}\right)-7\)
=\(\dfrac{1}{2}+\left[\dfrac{49}{18}\left(\dfrac{-19}{34}+\dfrac{19}{34}\right)\right]-7\)
=\(\dfrac{1}{2}+0-7=\dfrac{-13}{2}\)
8)\(\dfrac{29}{32}\left(\dfrac{41}{36}-\dfrac{32}{58}\right)-\dfrac{41}{36}\left(\dfrac{29}{32}+\dfrac{18}{41}\right)\)
=\(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{29}{32}.\dfrac{32}{58}-\dfrac{41}{36}.\dfrac{29}{32}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(\left(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{41}{36}\dfrac{29}{32}\right)-\dfrac{29}{32}.\dfrac{32}{58}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(0-\dfrac{1}{2}+\dfrac{1}{2}=0\)
\(=-\left[\dfrac{-17}{21}+\dfrac{-19}{51}-\dfrac{4}{21}\right]+\dfrac{32}{51}\)
\(=1+\dfrac{19}{51}+\dfrac{32}{51}=1+1=2\)
\(\left(a\right):P=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{99}{100}\)
Nhận xét
thừa số tổng quát là \(\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\) với n =1 đến 10
\(P=\dfrac{1.3.2.4.3.5...9.11}{2^2.3^2...9^2.10^2}=\dfrac{\left(1.2.3...9\right)\left(3.4.5....11\right)}{\left(2.3.4....10\right)\left(2.3.4....10\right)}\)
\(P=\dfrac{1.2.3..9}{2.3.4..9.10}.\dfrac{3.4.5...10.11}{2.3.4....10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)
Ta có:B=1\(\dfrac{6}{41}\)( \(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\) )
B=\(\dfrac{47}{41}\) [\(\dfrac{12\left(1+\dfrac{1}{19}-\dfrac{1}{37}-\dfrac{1}{53}\right)}{3\left(1+\dfrac{1}{3}-\dfrac{1}{37}-\dfrac{1}{53}\right)}:\dfrac{4\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}\) B = \(\dfrac{47}{41}\) [ \(\dfrac{12}{3}:\dfrac{4}{5}\)]
B = \(\dfrac{47}{41}\)[ 4 . \(\dfrac{5}{4}\)]
B = \(\dfrac{47}{41}.5\)
B = \(\dfrac{235}{41}\)
Chúc bn hc tốt!!!
mk có thắc mắc là bạn để 3 ra ngoài sao 1/3 vẫn giữ nguyên vậy phải bằng 1/9 mới đúng chứ'
\(\dfrac{-5}{9}+1\dfrac{5}{9}.\left(\dfrac{3}{4}-\dfrac{2}{5}\right):7^2\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\left(\dfrac{3}{4}-\dfrac{2}{5}\right):49\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\left(\dfrac{15}{20}-\dfrac{8}{20}\right):49\\ =\dfrac{-5}{9}+\dfrac{14}{9}.\dfrac{7}{20}:49\\ =\dfrac{-5}{9}+\dfrac{49}{90}:49\\ =\dfrac{-5}{9}+\dfrac{1}{90}\\ =\dfrac{-50}{90}+\dfrac{1}{90}\\ =\dfrac{-49}{90}\)
\(1\dfrac{13}{15}.0,75-\left(\dfrac{104}{195}+25\%\right).\dfrac{24}{47}-3\dfrac{12}{13}:3\\ =\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{8}{15}+\dfrac{1}{4}\right).\dfrac{24}{47}-\dfrac{51}{13}:3\\ =\dfrac{7}{5}-\left(\dfrac{32}{60}+\dfrac{15}{60}\right).\dfrac{24}{47}-\dfrac{51}{13}.\dfrac{1}{3}\\ =\dfrac{7}{5}-\dfrac{47}{60}.\dfrac{24}{47}-\dfrac{17}{13}\\ =\dfrac{7}{5}-\dfrac{2}{5}-\dfrac{17}{13}\\ =1-\dfrac{17}{13}\\ =\dfrac{13}{13}-\dfrac{17}{13}\\ =\dfrac{-4}{13}\)
9: \(=\dfrac{47}{51}\cdot\dfrac{17}{94}-\dfrac{47}{51}\cdot\dfrac{53}{91}-\dfrac{53}{91}\cdot\dfrac{91}{53}+\dfrac{53}{91}\cdot\dfrac{47}{51}\)
\(=\dfrac{1}{6}-1=-\dfrac{5}{6}\)
10: \(=\dfrac{13}{19}\cdot\dfrac{19}{26}-\dfrac{13}{19}\cdot\dfrac{71}{43}+\dfrac{71}{43}\cdot\dfrac{13}{19}-\dfrac{71}{43}\cdot\dfrac{86}{71}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}\)
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
29/19.49/51+29/19.34/51-29/19.32/51
=29/19.(49/51+34/51-32/51)
=29/19.1
=29/19
\(\dfrac{29}{19}.\dfrac{49}{51}+\dfrac{29}{19}.\dfrac{34}{51}-\dfrac{29}{19}.\dfrac{32}{51}\)
\(=\dfrac{29}{19}.\left(\dfrac{49}{51}+\dfrac{34}{51}-\dfrac{32}{51}\right)\)
\(=\dfrac{29}{19}.1\)
\(=\dfrac{29}{19}\)