Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(\dfrac{1}{2010}>0\) và \(\dfrac{-7}{19}< 0\) \(\Leftrightarrow\dfrac{1}{2010}>\dfrac{-7}{19}\) vậy \(\dfrac{1}{2010}>\dfrac{-7}{19}\)
b) ta có : \(497< 499\Rightarrow\dfrac{497}{499}< 1\Leftrightarrow\dfrac{497}{-499}>-1\) (1)
ta có : \(2345>2341\Rightarrow\dfrac{2345}{2341}>1\Leftrightarrow\dfrac{-2345}{2341}< -1\) (2)
từ (1) và (2) ta có \(\dfrac{497}{-499}>\dfrac{-2345}{2341}\) vậy \(\dfrac{497}{-499}>\dfrac{-2345}{2341}\)
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
a) Ta có:
\(-\dfrac{24}{35}< -\dfrac{24}{30}< -\dfrac{19}{30}\)
\(\Rightarrow x< y\)
b) Ta có:
\(A=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)
\(A=\left(1-\dfrac{1}{2007}\right)-\left(1-\dfrac{1}{2008}\right)+\left(1-\dfrac{1}{2009}\right)-\left(1-\dfrac{1}{2010}\right)\)
\(A=1-\dfrac{1}{2007}-1+\dfrac{1}{2008}+1-\dfrac{1}{2009}-1+\dfrac{1}{2010}\)
\(A=-\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\)
Ta lại có:
\(B=-\dfrac{1}{2006.2007}-\dfrac{1}{2008.2009}\)
\(B=-\dfrac{1}{2006}+\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\)
=> Dễ dàng thấy A > B
a) \(\frac{1}{8}>0>\frac{-3}{8}=>\frac{1}{8}>\frac{-3}{8}\)
b) \(\frac{-3}{7}< 0< 2\frac{1}{2}=>\frac{-3}{7}< 2\frac{1}{2}\)
c) \(-3.9< 0< 0.1=>-3.9< 0.1\)
d) \(-2.3< 0< 3.2=>-2.3< 3.2\)
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)
19) \(\sqrt{19-x}=19\)
\(\Rightarrow\sqrt{19-x}=\sqrt{19^2}\)
\(\Rightarrow19-x=19^2\)
\(\Rightarrow19-19^2=x\)
\(\Rightarrow x=19\left(1-19\right)=-19.18=-342\)
21) \(\sqrt{x-1}=\dfrac{1}{3}\)
\(\Rightarrow\sqrt{x-1}=\sqrt{\left(\dfrac{1}{3}\right)^2}\)
\(\Rightarrow x-1=\dfrac{1}{3^2}\)
\(x=\dfrac{1+9}{9}=\dfrac{10}{9}\)
24)\(\sqrt{2x+\dfrac{5}{4}}=\dfrac{3}{2}\)
\(\Rightarrow\sqrt{2x+\dfrac{5}{4}}=\sqrt{\left(\dfrac{3}{2}\right)^2}\)
\(\Rightarrow2x+\dfrac{5}{4}=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow2x=\dfrac{9-5}{4}=1\)
\(\Rightarrow x=0,5\)
25) \(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\)
\(\Rightarrow\sqrt{\dfrac{2x-7}{6}}=\sqrt{\left(\dfrac{1}{6}\right)^2}\)
\(\Rightarrow\dfrac{2x-7}{6}=\left(\dfrac{1}{6}\right)^2=\dfrac{1}{36}\)
\(\Rightarrow\dfrac{12x-42}{36}=\dfrac{1}{36}\)
\(\Rightarrow12x-42=1\)
\(\Rightarrow12x=43\)
\(\Rightarrow x=\dfrac{43}{12}\)
\(\dfrac{1}{2010}>0\\ \dfrac{-7}{19}< 0\\ \Rightarrow\dfrac{-7}{19}< \dfrac{1}{2010}\)
`1/2010>0`
`-7/19<0`
`=>1/2010> -7/19`