K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

1.

\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)

15 tháng 3 2021

2.

\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)

NV
22 tháng 2 2019

Do \(x^2-5x+7=x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\) \(\forall x\)

Nên BPT đã cho tương đương:

\(\dfrac{1}{13}\left(x^2-5x+7\right)\le x^2-2x-2\le x^2-5x+7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13\left(x^2-2x-2\right)\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-12x^2+21x+33\le0\\3x-9\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-1\\x\ge\dfrac{11}{4}\end{matrix}\right.\\x\le3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\le-1\\\dfrac{11}{4}\le x\le3\end{matrix}\right.\)

24 tháng 6 2019

1,\(pt\Leftrightarrow11x^2-5x+6=x^3+5x^2+6x\)

\(\Leftrightarrow x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)(tm)

24 tháng 6 2019

2,\(pt\Leftrightarrow\frac{1}{x+1}+\frac{2}{x^2-x+1}=\frac{2x+3}{x^3+1}\)

\(\Leftrightarrow\frac{x^2-x+1+2x+2}{x^3+1}=\frac{2x+3}{x^3+1}\)

\(\Rightarrow x^2-x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

NV
3 tháng 3 2021

Câu a bạn coi lại đề

b. ĐKXĐ: \(x\ge0;x\ne1\)

\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)

\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)

\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )

\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)

\(\Leftrightarrow20x^2+16x-1=0\)

\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Bạn xem lại đề câu a.

a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)

=>\(\dfrac{x^2+x-12}{x-1}< 0\)

=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)

=>1<x<3 hoặc x<-4

b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)

=>3x+4<3

=>3x<-1

=>x<-1/3

c: TH1: 2x^2-3x+1>0 và x+2>0

=>(2x-1)(x-1)>0 và x+2>0

=>x>1

TH2: (2x-1)(x-1)<0 và x+2<0

=>x<-2 và 1/2<x<1

=>Loại